```{r setup, message=FALSE, include=FALSE, paged.print=FALSE} #! =============================================== #! load required packages library(ggplot2) library(tidyverse) library(stringi) library(pls) library(caret) library(here) library(tsibble) library(broom) library(rsample) library(inspectdf) library(caTools) ``` ```{r preprocessing} #! =============================================== #! load data set and set running window size load(here('notebooks/data/CL2015.RData')) window_size <- 8 #! =============================================== #! A function to mark lures in a sequence with_lures <- function(stimulus, stimulus_type, n) { sapply(1:length(stimulus), function(i) { lures <- c(as.character(stimulus[i-n-1]), as.character(stimulus[i-n+1])) are_valid_trials <- i>n && all(!is.na(c(lures,stimulus[i]))) ifelse(are_valid_trials && stimulus[i] %in% lures, "lure", as.character(stimulus_type[i])) }) } #! =============================================== #! Preprocess data set to add t,tl,l,ll,u,ul,s,sl,a,al #! a and al are respectively accuracy and recent accuracy seqs <- NB %>% group_by(participant, block, condition) %>% mutate(n = ifelse(condition=='2-back',2,3)) %>% mutate(stimulus_type = with_lures(stimulus, stimulus_type, n)) %>% mutate(tl = slide2_dbl(stimulus_type, rt, ~length(which(.x=='target'))/length(which(!is.na(.y))), .partial=T,.size=window_size), ll = slide2_dbl(stimulus_type, rt, ~length(which(.x=='lure'))/length(which(!is.na(.y))), .partial=T, .size=window_size), sl = slide_dbl(stimulus_type, ~sum(sort(table(.x), decreasing = T)[1:2]) - 1, .partial=T, .size=window_size), sl = ifelse(is.na(sl), 0, sl), tl = ifelse(is.na(tl), NA, tl), ll = ifelse(is.na(ll), NA, ll), ul = slide_dbl(stimulus, ~max(table(.))-1, .partial=T, .size=window_size), vl = slide_dbl(stimulus, ~length(unique(.)), .partial=T, .size=window_size), al = slide2_dbl(correct, rt, ~length(which(.x))/length(which(!is.na(.y))), .partial=T, .size=window_size)) %>% nest(.key='local_stats') %>% #mutate(stimuli = map(local_stats, ~paste0(.x$stimulus,collapse = ''))) %>% mutate(a = map_dbl(local_stats, ~length(which(.x$correct)))) %>% mutate(t = map_dbl(local_stats, ~length(which(.x$stimulus_type=='target')))) %>% mutate(l = map_dbl(local_stats, ~length(which(.x$stimulus_type=='lure')))) %>% mutate(s = map_dbl(local_stats, ~sum(sort(table(.x$stimulus), decreasing = T)[1:2]) - 1)) %>% mutate(v = map_dbl(local_stats, ~length(unique(.x$stimulus)))) %>% mutate(local_stats = map(local_stats, ~.x %>% select(-trial,-stimulus,-stimulus_type,-choice))) %>% ungroup() %>% select(-participant,-block,-condition) #! =============================================== #! visualize correlations inspect_cor(seqs %>% unnest(local_stats), show_plot = T) ``` ```{r models} #! =============================================== #! prepare data for modeling (remove na, etc) #! it also restructures "correct" column to avoid caret errors. C stands for "CORRECT", and I is "INCORRECT" data <- seqs %>% unnest(local_stats) %>% mutate(correct=factor(as.numeric(correct),labels=c("C","I"))) %>% filter(!is.na(correct), !is.na(rt)) #! =============================================== #! Prepare train and test partials shuff <- sample(nrow(data)) split <- nrow(data) * 0.8 train_data <- data[1:split,] test_data <- data[(split+1):nrow(data),] #! =============================================== #! training parameters for the PLS models plsTrControl <- trainControl( method = "cv", number = 5 ) #==================================================# # Train PLS model (accuracy) model_pls_accuracy <- train( a ~ .-rt-al-correct, data = train_data, method = "pls", tuneLength = 20, trControl = plsTrControl, preProc = c("zv","center","scale")) # Check CV profile plot(model_pls_accuracy) # PLS variable importance plot(varImp(model_pls_accuracy), main="Accuracy - Variable Importance") #==================================================# # Train PLS model (rt) train_data_x <- data %>% select(-rt,-a,-correct) train_data_y <- (data %>% select(rt))$rt model_pls_rt <- train( train_data_x, train_data_y, method = "pls", tuneLength = 20, trControl = plsTrControl, preProc = c("center","scale")) # Check CV profile plot(model_pls_rt) # PLS variable importance plot(varImp(model_pls_rt), main="RT - Variable Importance") predicted_rt_data <- predict(model_pls_rt, test_data) #FIXME confusionMatrix(predicted_rt_data,test_data$rt) colAUC(predicted_rt_data,test_data$rt, plotROC=T) #==================================================# # training control params for "correct" column trControl <- trainControl( method = "cv", number = 5, classProbs = T, summaryFunction = twoClassSummary ) model_glm_correct <- train( correct ~ .-rt-a-al, data = train_data, method = "glm", family = "binomial", trControl = trControl ) model_glm_correct varImp(model_glm_correct) predicted_correct_data <- predict(model_glm_correct, test_data, type="prob") #FIXME confusionMatrix(predicted_correct_data, test_data$correct) colAUC(predicted_correct_data, test_data$correct, plotROC=T) #==================================================# ## OLD MODEL (only global features) model_glm_correct_old <- train( correct ~ n+t+v, data = train_data, method = "glm", family = "binomial", trControl = trControl ) model_glm_correct_old predicted_old_correct_data <- predict(model_glm_correct_old, test_data, type="prob") #FIXME confusionMatrix(test_data$correct, predicted_old_correct_data) colAUC(predicted_old_correct_data,test_data$correct, plotROC=T) ```