Newer
Older
notebooks / coursera_compneuro / week6 / alpha_neuron.py
# %%
"""
Created on Wed Apr 22 16:13:18 2015

Fire a neuron via alpha function synapse and random input spike train
R Rao 2007

translated to python by rkp 2015
"""
from __future__ import print_function, division

import time
import numpy as np
from numpy import concatenate as cc
import matplotlib.pyplot as plt

np.random.seed(0)
# I & F implementation dV/dt = - V/RC + I/C
h = 1. # step size, Euler method, = dt ms
t_max= 200 # ms, simulation time period
tstop = int(t_max/h) # number of time steps
ref = 0 # refractory period counter

# Generate random input spikes
# Note: This is not entirely realistic - no refractory period
# Also: if you change step size h, input spike train changes too...
thr = 0.9 # threshold for random spikes
spike_train = np.random.rand(tstop) > thr

# alpha func synaptic conductance
t_a = 100 # Max duration of syn conductance
t_peak = 0.5 # ms
g_peak = 0.05 # nS (peak synaptic conductance)

spikes_traces = [0]

for t_peak in np.arange(0.5, 10.5, 0.5):
  const = g_peak / (t_peak*np.exp(-1));
  t_vec = np.arange(0, t_a + h, h)
  alpha_func = const * t_vec * (np.exp(-t_vec/t_peak))

  # plt.plot(t_vec[:80], alpha_func[:80])
  # plt.xlabel('t (in ms)')
  # plt.title('Alpha Function (Synaptic Conductance for Spike at t=0)')
  # plt.draw()
  # time.sleep(2) 

  # capacitance and leak resistance
  C = 0.5 # nF
  R = 40 # M ohms
#   print('C = {}'.format(C))
#   print('R = {}'.format(R))

  # conductance and associated parameters to simulate spike rate adaptation
  g_ad = 0
  G_inc = 1/h
  tau_ad = 2

  # Initialize basic parameters
  E_leak = -60 # mV, equilibrium potential
  E_syn = 0 # Excitatory synapse (why is this excitatory?)
  g_syn = 0 # Current syn conductance
  V_th = -40 # spike threshold mV
  V_spike = 50 # spike value mV
  ref_max = 4/h # Starting value of ref period counter
  t_list = np.array([], dtype=int)
  V = E_leak
  V_trace = [V]
  t_trace = [0]

#   fig, axs = plt.subplots(2, 1)
#   axs[0].plot(np.arange(0,t_max,h), spike_train)
#   axs[0].set_title('Input spike train')

  for t in range(tstop):

      # Compute input
      if spike_train[t]: # check for input spike
          t_list = cc([t_list, [1]])

      # Calculate synaptic current due to current and past input spikes
      g_syn = np.sum(alpha_func[t_list])
      I_syn = g_syn*(E_syn - V) 

      # Update spike times
      if np.any(t_list):
          t_list = t_list + 1
          if t_list[0] == t_a: # Reached max duration of syn conductance
              t_list = t_list[1:]

      # Compute membrane voltage
      # Euler method: V(t+h) = V(t) + h*dV/dt
      if not ref:
          V = V + h*(-((V-E_leak)*(1+R*g_ad)/(R*C)) + (I_syn/C))
          g_ad = g_ad + h*(-g_ad/tau_ad) # spike rate adaptation
      else:
          ref -= 1
          V = V_th - 10 # reset voltage after spike
          g_ad = 0

      # Generate spike
      if (V > V_th) and not ref:
          V = V_spike
          ref = ref_max
          g_ad = g_ad + G_inc

      V_trace += [V]
      t_trace += [t*h]

  spikes_traces += [np.count_nonzero(np.array(V_trace) == V_spike)]

#   axs[1].plot(t_trace,V_trace)
#   plt.draw()
#   axs[1].set_title('Output spike train')
#   plt.show()

print(spikes_traces)
plt.plot([.0,10.],[0.,36.])
plt.plot(spikes_traces)
plt.show()