Newer
Older
notebooks / ccn2019-criterion.R
#==================================================#
# model the "accuract" column (a for global, and al for local accuracy)

library(here)
library(tidyverse)
library(caret)
library(inspectdf)
library(skimr)
library(ROSE)

load(here("notebooks/data/nback_seqs.Rd"))

set.seed(42)

seqs.imputed <- seqs %>%
  filter(!is.na(correct), !is.na(rt)) %>%
  mutate(correct=factor(correct,labels=c("INCORRECT","CORRECT")))

#DEBUG inspect_num(seqs.imputed)

#seqs.dummy <- predict(dummyVars(~.,data=seqs.imputed),seqs.imputed)


#DEBUG train_indexes <- createResample(seqs.imputed$cr,list=F)[,1]

train_indexes <- createDataPartition(seqs.imputed$correct,
                                     times = 1,
                                     p = 0.7,
                                     list = F)
train_data <- seqs.imputed[train_indexes,]
test_data <- seqs.imputed[-train_indexes,]

train_data.imbalanced <- ROSE(correct ~ .,
                            data = train_data,
                            seed = 1)$data

# VIsualize split
train_data.imbalanced$grp <- "train"
test_data$grp <- "test"

rbind(train_data.imbalanced, test_data) %>% 
  ggplot(aes(x=correct, fill=grp)) +
  geom_histogram(stat="count", position='dodge') +
  labs(title="Imbalanced Split")

rbind(train_data.imbalanced, test_data) %>% 
  ggplot(aes(x=cr, fill=grp)) +
  geom_density(stat="count", position='dodge')

control <- trainControl(
  method = "cv",
  number = 5,
  verboseIter = T
)

pls.new_model <- train(
  cr ~ t+l+s+n+tl+ll+sl+ul+vl,
  data = train_data,
  method = "pls",
  preProcess = c("center","scale"),
  trControl = control
)

pls.old_model <- train(
  cr ~  t + n:v + n,
  data = train_data,
  method = "pls",
  preProcess = c("center","scale"),
  trControl = control
)


summary(pls.old_model)
summary(pls.new_model)
plot(varImp(pls.old_model))
plot(varImp(pls.new_model), main="Criterion - Variable Importance")

trellis.par.set(caretTheme())
densityplot(pls.new_model, pch = "|")
densityplot(pls.old_model, pch = "|")

resamps <- resamples(list(old = pls.old_model, new = pls.new_model))
summary(resamps)
dotplot(resamps, metric = "Rsquared")
difValues <- diff(resamps)
bwplot(difValues, layout=c(1,3))


pls.new_train_predicted <- predict(pls.new_model, train_data, type="raw")
pls.old_train_predicted <- predict(pls.old_model, train_data, type="raw")
pls.new_predicted <- predict(pls.new_model, test_data, type="raw")
pls.old_predicted <- predict(pls.old_model, test_data, type="raw")


summary(pls.new_model)
summary(pls.old_model)

# SSE and RMSE

SSE <- sum((test_data$cr - pls.new_predicted)^2)    # sum of squared errors
SST <- sum((test_data$cr - mean(train_data$cr))^2) # total sum of squares, remember to use training data here
R_square <- 1 - SSE/SST
SSE <- sum((test_data$cr - pls.new_predicted)^2)
RMSE <- sqrt(SSE/length(pls.new_predicted))


SSE <- sum((test_data$cr - pls.old_predicted)^2)
R_square <- 1 - SSE/SST
SSE <- sum((test_data$cr - pls.old_predicted)^2)
RMSE <- sqrt(SSE/length(pls.old_predicted))


as.data.frame(cbind(predicted = pls.old_predicted, observed = test_data$cr)) %>%
  ggplot(aes(predicted, observed)) +
    #coord_cartesian(xlim = c(-5, -2.8), ylim = c(-7, 0)) +
    geom_point(alpha = 0.1,shape=16) + 
    geom_smooth(method=lm,se=F) +
    ggtitle("Criterion: Predicted vs Actual") +
    xlab("Predecited") +
    ylab("Observed")