#%% [markdown] # The following codes query the EFO ontology and retrives tasks and concepts that are assigned with readable labels. Then search PubMed Central for the number of articles on #%% # pip install rdflib from rdflib import OWL, Graph from rdflib.util import guess_format from owlready2 import * import time from rdflib import URIRef from rdflib import Graph from rdflib.namespace import RDFS import pandas as pd owl_path = "file:///Users/morteza/workspace/ontologies/efo.owl" owl_prefix = "http://www.semanticweb.org/morteza/ontologies/2019/11/executive-functions-ontology#" efo = get_ontology(owl_path).load() # extract class names of the tasks and concepts #tasks = [t.name for t in efo.search(subclass_of = efo.Task)] #concepts = [c.name for c in efo.search(subclass_of = efo.ExecutiveFunction)] # the following code but queries the RDFS labels defined for tasks and concepts # to query all descendants use "rdfs:subClassOf*" instead. def query_labels(graph, parent_class): class_name = parent_class[1:] if parent_class.startswith(":") else parent_class query = f""" prefix : <{owl_prefix}> SELECT ?label WHERE {{ ?task rdfs:subClassOf* :{class_name}; rdfs:label ?label }} """ # select the all rdfs:labels, flatten the list of labels, and convert them to python string labels = [labels for labels in graph.query(query)] flatten_labels = [l.toPython() for ll in labels for l in ll] return flatten_labels # preapre RDFLib graph for SPARQL queries graph = default_world.as_rdflib_graph() tasks = query_labels(graph, "Task") concepts = query_labels(graph, "ExecutiveFunction") print(f"Tasks: {len(tasks)}, Concepts: {len(concepts)}") time_estimate = len(tasks) * len(concepts) print(f"it takes ~ {time_estimate}s to query PubMed Central for these tasks and concepts.") #%% # Partial lookup: only queries pubmed if a combination of task-concept is not already fetched. csv_file = "/Users/morteza/workspace/notebooks/efo/data/efo_taskconcept_pubmed_hits.csv" from metapub import PubMedFetcher fetcher = PubMedFetcher() def query_pubmed_for_task(task, concept): suffixes = ['',' task',' game',' test'] task_queries = map(lambda s: task+s, suffixes) suffixed_hits = [] hits = [] for tq in task_queries: query = f"({tq}[TIAB]) AND ({concept}[TIAB])" pmids = fetcher.pmids_for_query(query=f'{query}', retmax=1000000, pmc_only=False) suffixed_hits += pmids if tq == task: hits = pmids return (hits, suffixed_hits) data = pd.read_csv(csv_file) with open(csv_file, "a",buffering=1) as csv: for task, concept in [(task, concept) for task in tasks for concept in concepts]: task_df = data[(data.task == task) & (data.concept == concept)] if task_df.empty: millis = int(round(time.time() * 1000)) hits, suffixed_hits = query_pubmed_for_task(task, concept) concept_query = f"({concept}[TIAB])" concept_hits = fetcher.pmids_for_query(query=f'{concept_query}', retmax=1000000, pmc_only=False) csv_line = f'{task},{concept},{len(hits)},{len(suffixed_hits)},{len(concept_hits)},{millis}\n' print(csv_line) csv.write(csv_line) #%% v2: creates a CSV filled with number of hits but csv file has a column for every hit-query #TODO reduce the number of queries (e.g. perform repetative task and concept queries only once) #TODO initiate csv with headers if empty def build_queries(task, concept): return { 'task_concept_ef_hits': f'("{task}"[TIAB]) AND ("{concept}"[TIAB]) AND ("executive function")', 'task_suffixtask_concept_ef_hits': f'("{task} task"[TIAB]) AND ("{concept}"[TIAB]) AND ("executive function")', 'task_suffixtest_concept_ef_hits': f'("{task} test"[TIAB]) AND ("{concept}"[TIAB]) AND ("executive function")', 'task_suffixgame_concept_ef_hits': f'("{task} game"[TIAB]) AND ("{concept}"[TIAB]) AND ("executive function")', 'task_concept_hits': f'("{task}"[TIAB]) AND ("{concept}"[TIAB])', 'task_suffixtask_concept_hits': f'("{task} task"[TIAB]) AND ("{concept}"[TIAB])', 'task_suffixtest_concept_hits': f'("{task} test"[TIAB]) AND ("{concept}"[TIAB])', 'task_suffixgame_concept_hits': f'("{task} game"[TIAB]) AND ("{concept}"[TIAB])', 'concept_hits': f'("{concept}"[TIAB])', 'concept_ef_hits': f'("{concept}"[TIAB]) AND ("executive function")', 'task_hits': f'("{task}"[TIAB])', 'task_suffixtask_hits': f'("{task} task"[TIAB])', 'task_suffixtest_hits': f'("{task} test"[TIAB])', 'task_suffixgame_hits': f'("{task} game"[TIAB])', 'task_ef_hits': f'("{task}"[TIAB]) AND ("executive function")', 'task_suffixtask_ef_hits': f'("{task} task"[TIAB]) AND ("executive function")', 'task_suffixgame_ef_hits': f'("{task} game"[TIAB]) AND ("executive function")', 'task_suffixtest_ef_hits': f'("{task} test"[TIAB]) AND ("executive function")' } def csv_header(): headers = ['task','concept','timestamp_ms'] headers += build_queries('','').keys() return ','.join(headers) def query_pubmed_and_create_csv(tasks, concepts, csv_file): try: data = pd.read_csv(csv_file) except: data = pd.DataFrame({'task':[],'concept':[]}) with open(csv_file, "a+",buffering=1) as csv: if len(csv.read()) == 0: print("Empty csv found, generating csv headers...") csv.write(csv_header() + '\n') for task, concept in [(task, concept) for task in tasks for concept in concepts]: previously_stored = data[(data.task == task) & (data.concept == concept)] if previously_stored.empty: millis = int(round(time.time() * 1000)) csv_cells = [task, concept, str(millis)] for qkey, query in build_queries(task, concept).items(): qhits = fetcher.pmids_for_query(query=f'{query}', retmax=1000000, pmc_only=False) csv_cells += [f"{len(qhits)}"] csv_line = ','.join(csv_cells) + '\n' print(csv_line) csv.write(csv_line) query_pubmed_and_create_csv(tasks, concepts, "/Users/morteza/workspace/notebooks/efo/data/efo_pubmed_hits.v2.csv")