NB_avg %>% mutate(cluster = dbscan::dbscan(cbind(accuracy,rts), eps = 0.5, minPts = 3)$cluster) %>% ggplot(aes(targets, accuracy, color=factor(cluster))) + ggtitle("targets (window = 8 trials)", "NOTE: each point is a single participant") + geom_point(alpha=0.3) + #geom_smooth(method='lm', se = F) + facet_wrap(~condition) NB_avg %>% ggplot(aes(lures, accuracy, color=condition)) + ggtitle("lures (window = 8 trials)", "NOTE: each point is a single participant") + geom_point(alpha=0.3) + geom_smooth(method='lm', se = F) NB_avg %>% ggplot(aes(skewness, accuracy, color=condition)) + ggtitle("skewness (window = 8 trials)", "NOTE: each point is a single participant") + geom_point(alpha=0.3) + geom_smooth(method='lm', se = F) NB_avg %>% ggplot(aes(lumpiness, accuracy, color=condition)) + ggtitle("lumpiness", "NOTE: each point is a single participant") + geom_point(alpha=0.3) + geom_smooth(method='lm', se = F) NB_avg %>% ggplot(aes(lumpiness, rts, color=condition)) + ggtitle("lumpiness (window = 8 trials)", "NOTE: each point is a single participant") + xlab("lumpiness") + ylab("Average RT") + geom_point(alpha=0.3) + geom_smooth(method='lm', se = F) nback <- NB_modified nback %>% mutate(block=as.factor(block)) %>% mutate(trial=as.factor(trial)) %>% mutate(condition=ifelse(condition=='2-back',2,3)) %>% #filter(condition=='3-back') %>% #mutate(correct=as.numeric(correct)) %>% inspect_cor(show_plot = T) averaged_nback <- NB_avg averaged_nback %>% mutate(condition=ifelse(condition=='2-back',2,3)) %>% inspect_cor(show_plot = T) base.df <- data.frame(x=100-base.roc$specificities, y=base.roc$sensitivities, auc = base.roc$auc[1], model="base") extd.df <- data.frame(x=100-extd.roc$specificities, y=extd.roc$sensitivities, auc = extd.roc$auc[1], model="extended") chance.df <- data.frame(x=1:100, y=1:100, model=" ", auc=50) library(ggrepel) dats <- rbind(extd.df, base.df, chance.df) to_auc_label <- function(model, auc) { paste(model, "\nAUC=", format(auc, digits=4), sep = "" ) } dats$label = NA dats[174,]$label = to_auc_label("Extended Model", dats[174,]$auc) dats[647,]$label = to_auc_label("Base Model", dats[647,]$auc) dats %>% ggplot(aes(x=x, y=y, group=model, color = model, linetype = factor(model))) + geom_line() + labs(title="AUCs for the base and extended models") + geom_label_repel(aes(label=label), na.rm = TRUE, box.padding = 2) + xlab("100% - Specificity") + ylab("Sensitivity") + theme_linedraw() + #scale_x_continuous(labels = scales::percent) + #scale_y_continuous(labels = scales::percent) + scale_fill_brewer(palette = "Greens") + scale_color_manual(values=c("black", "#808080", "gray")) + theme(legend.position = "none") ggsave("fig1.png", plot = last_plot(), width = 4, height = 4) boruta_scores %>% mutate(feature = row.names(.)) %>% arrange(meanImp) %>% ggplot(aes(x=reorder(feature,-meanImp), y=meanImp, fill=decision)) + geom_bar(stat = "identity") + ylab("Relative Importance Score") + xlab("Feature") + theme_linedraw() + scale_fill_grey() + labs(fill = "Selection Decision") + theme( legend.position = c(.95, .95), legend.justification = c("right", "top"), legend.box.just = "right", legend.margin = margin(6, 6, 6, 6) )