library(tidyverse) library(caret) library(here) library(inspectdf) library(glmnet) library(ROSE) rm(seqs) load(here("notebooks/data/nback_seqs.Rd")) f <- as.formula("correct ~ n + stimulus + sl") set.seed(42) # 1. dummy vars # INPUTS : seqs # OUTPUTS: seqs.dmy seqs <- seqs %>% filter(!is.na(correct) & !is.na(rt)) # train.indices <- createDataPartition(seqs[[toString(f[[2]])]], p = .8, list =FALSE) seqs.train.balanced <- seqs[train.indices,] seqs.train <- seqs.train.balanced # seqs.train <- ROSE(f, data = seqs.train.balanced)$data seqs.train.x <- model.matrix(f, seqs.train)[,-1] seqs.train.y <- seqs.train[[toString(f[[2]])]] seqs.test <- seqs[-train.indices,] seqs.test.x <- model.matrix(f, seqs.test)[,-1] seqs.test.observed_y <- seqs.test[[toString(f[[2]])]] # model <- cv.glmnet(seqs.train.x, # seqs.train.y, # alpha = 1, # nfolds = 5, # family = "binomial", # type.measure = "auc") # # model$lambda.min ctrl <- trainControl(method="cv", number=5, classProbs=T, sampling = "up", savePredictions = T, summaryFunction=twoClassSummary) # glmnet tune tune <- expand.grid(alpha = 0:1, lambda = seq(0, 0.01, length = 100)) # pls tune tune <- expand.grid(ncomp=1:20) model <- train(seqs.train.x, seqs.train.y, method = "pls", family = "binomial", metric = "ROC", preProc = c("center", "scale"), tuneGrid = tune, trControl = ctrl) model$bestTune plot(model) seqs.test.y <- model %>% predict(seqs.test.x) seqs.test.y_prob <- model %>% predict(seqs.test.x, type="prob") confusionMatrix(seqs.test.y, seqs.test.observed_y) library(pROC) roc(seqs.test.observed_y, seqs.test.y_prob$YES, legacy.axes=T, plot = T, lwd=2, col="black", print.auc=T, percent = T, print.auc.y = 40, print.auc.x = 55, lty = 1, of = "se", ci = T) # RT # data.frame( # RMSE = RMSE(y.test, seqs.test$correct), # Rsquare = R2(y.test, seqs.test$correct) # )