#%% [markdown]
# Complex experiments in cognitive science require participants to perform multiple tasks and capture observations with different modalities. This notebook demonstrates some possible solutions for the problem of scheduling experimental tasks.
# First, we model a study with 12 sessions. Sessions consist of several surveys before and after a set of experimental tasks. We then define constraints and solve for a schedule for the given scenario. This scenario only plans the experiment for a single subject.
# Use the following command to install dependencies: `pip install pyschedule`
#%%
from math import ceil
from pyschedule import Scenario, solvers, plotters, alt
import seaborn as sns
sns.color_palette("muted")
sns.set_style('white')
# experiment duration in minutes
session_duration = 60
n_subjects = 2
n_sessions = 12
duration_per_question = .1666667 # minutes (~10sec)
questionnaires = {
"study_level": {
"xcit_demographics": 20,
"aiss": 20,
"arces": 12,
"asrs": 18,
"avg2019": 16,
"bfi_2": 60,
"bisbas": 24,
"bis11": 12,
"cfq": 25,
"cfs": 12,
"dyslexia": 15,
"ehi_sf": 4,
"grit12": 12,
"i_panas_sf": 10,
"ipaq_sf": 7,
"maas": 15,
"mfs": 12,
"mw": 8,
"mwq": 5,
"ncs_6": 6,
"nfc": 18,
"psqi": 9,
"rei": 40,
"sci": 8,
"sqs": 28,
"upps_sf": 20,
"webexec": 12,
"who5": 5,
"whoqol": 26,
"xcit_poststudy_debrief": 20 # only in session 12
},
"session_level": {
'nasa_tlx': 6, # after game
"xcit_postgame_debrief": 15 #after game
}
}
s = Scenario('Prolific500', horizon=session_duration)
sessions = s.Resources('Session', num=n_sessions)
# one-time questionnaires
pregame_tasks = []
for q in questionnaires['study_level'].keys():
n_questions = questionnaires['study_level'].get(q, 0)
duration = ceil(n_questions * duration_per_question)
print(duration)
task = s.Task(q, length= duration, delay_cost=1)
task += alt(sessions)
# not really a pregame task
# pregame_tasks.append(questionnaire)
# game
games = s.Task('Game',length=45, delay_cost=1, is_group=False)
games += sessions
# post-tasks
postgame_tasks = []
for q in questionnaires['session_level'].keys():
n_questions = questionnaires['session_level'].get(q, 0)
duration = ceil(n_questions * duration_per_question)
task = s.Task(q, length= duration, delay_cost=1)
task += sessions
postgame_tasks.append(task)
# add constraints on precedences
#s += pregame_tasks < games
s += games < postgame_tasks
# compute and print session schedules
solvers.mip.solve(s)
print(s.solution())
plotters.matplotlib.plot(s)
#%%
#%% [markdown]
# Complex experiments in cognitive science require participants to perform multiple tasks and capture observations with different modalities. This notebook demonstrates some possible solutions for the problem of scheduling experimental tasks.
# First, we model a study with 12 sessions. Sessions consist of several surveys before and after a set of experimental tasks. We then define constraints and solve for a schedule for the given scenario. This scenario only plans the experiment for a single subject.
#%%
# MPILX Scheduling
from pyschedule import Scenario, solvers, plotters, alt
# experiment duration for each subject in minutes
study_duration = 12 * 24 * 60 # days * hours * minutes
n_subjects = 2
task_durations = {
'pretest_presurvey': 30,
'pretest_DWI': 15,
'pretest_rsfMRI': 15,
'pretest_anatomical': 15,
'pretest_taskfMRI': 45,
'pretest_postsurvey': 30,
'pretest_presurvey': 30,
'training_presurvey': 30,
'training_': 10 * 24 * 60, #TODO expand to daily
'training_postsurvey': 30,
'posttest_DWI': 15,
'posttest_rsfMRI': 15,
'posttest_anatomical': 15,
'posttest_taskfMRI': 45,
'posttest_postsurvey': 30
}
# the planning horizon has
s = Scenario('MPILX50', horizon=study_duration)
subject = s.Resource('subject', num=n_subjects)
tasks = list()
for t in task_durations.keys():
duration = task_durations[t]
task = s.Task(t, length=duration, delay_cost=1)
task += alt(subject)
tasks.append(task)
for i in range(len(tasks)-1):
s += tasks[i] < tasks[i+1]
# compute and print session schedules
solvers.mip.solve(s)
print(s.solution())
plotters.matplotlib.plot(s)