Newer
Older
notebooks / sentence_transformer_pg.py
Morteza Ansarinia on 18 Oct 2021 1 KB experimenting sbert+hdbscan
# %%
!pip install -Uq sentence-transformers hdbscan

# %%
from hdbscan.hdbscan_ import hdbscan
import numpy as np
from sentence_transformers import SentenceTransformer
import seaborn as sns
import matplotlib.pyplot as plt
from umap import UMAP

import hdbscan


model = SentenceTransformer('all-MiniLM-L6-v2', device='cpu')

embeddings = model.encode([
  'this is about a cat',
  'but this one is not about animals',
  'this is about a dog',
  'but this one is about animals',
  'this one is about humans',
  'this one is about queen',
  'this one is about king'
])


clusterer = hdbscan.HDBSCAN(2, prediction_data=True).fit(embeddings)

clusterer.labels_, clusterer.probabilities_

embeddings_2d = UMAP().fit_transform(embeddings)

palette = sns.color_palette('deep', 8)

colors = [sns.desaturate(palette[col], sat)
          for col, sat in zip(clusterer.labels_,
                              clusterer.probabilities_)]

plt.scatter(embeddings_2d.T[0], embeddings_2d.T[1], c=colors)


hdbscan.prediction.all_points_membership_vectors(clusterer)