--- title: "Unbiased N-Back" date: "5/12/2019" output: ioslides_presentation: default slidy_presentation: default --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = FALSE) library(ggplot2) library(tidyverse) library(GA) library(stringi) load('./data/CL2015.RData') ``` ## Intro ### Problem: - local statistical properties of the n-back affect how we respond. - local vs. global properties, what matters the most? ### By-products - an agent to replicate behavioral data sets - an online service to generate and evaluate n-back sequences ## Method - create history window (a.k.a, contiguous subsequences) - calculate local T, L, S, U, $RT_{mean}$, $Accuracy_{mean}$ for each subsequence - Model RT/Acc (response vars) with local properties (exp. vars) - Cluster responses (or exp. vars?) - Investigate if extracted clusters are statistically different ## Modeling - Create two models for local and global features as explanatory vars - Continue with modeling RT and Accuracy based upon local and global feats and compare them. Which model provides a better description of the recoreded RT and Accuracy vars? (model comparasion, model selection, etc) ## Constraints - fixed number of targets - fixed number of lures (a.k.a, foils) - uniform distribution of choices - controlled local lumpiness ```{r} trials <- c('a','b','c','d','c','d','b','a','a','d','b','a','c','c','a','c') min_len <-4 max_len <-4 contig_seqs = list() for (st in 1:length(trials)) { min_fin_index <- st + min_len - 1 max_fin_index <- min(st + max_len -1, length(trials)) for (fin in min_fin_index:max_fin_index) { seq <- list(trials[st:fin]) contig_seqs <- c(contig_seqs, seq) } } ``` Each constraint is a cost function to minimize for each sequence of stimuli ``` history <- contig_seqs targets <- 4 lures <- 2 targets_fitness <- function(x) 1.0 - 10*dnorm(x,mean=0,sd=4) lures_fitness <- function(x) 1.0 - 10*dnorm(x,mean=0,sd=4) # calc skewness skewness_fitness <- function(x, choices) { uniform_ratio <- length(x) / length(choices) deviation_from_uniform <- setNames(vector('numeric', length(choices)), choices) for (c in choices) { deviation_from_uniform[c] = abs(length(x[x==c]) - uniform_ratio) } #TODO convert to gaussian loss max(deviation_from_uniform) } ralph2014_skewed <- function(x, choices) { #trials = len(seq) #freqs = [float(seq.count(c)) for c in choices] #ralph_skewed = sum(heapq.nlargest(int(len(choices) / 2), freqs)) > (trials * 2 / 3) #return ralph_skewed F } merged_fitness <- function(x) targets_fitness(x) + lures_fitness(x) + skewness_fitness(x) GA <- ga(type = "real-valued", fitness = fitness, lower = -10, upper = 10) plot(GA) targets_sample <- data.frame(x=-targets:targets) targets_sample %>% ggplot(aes(x,y=targets_fitness(x))) + geom_line() ``` ```{r} #NB %>% # filter(participant=='P1') %>% # group_by(block) %>% # summarise(trials=n_distinct(trial)) with_lures <- function(stim, stim_type, history) { # extend to 2-back/3-back res <- sapply( 1:length(stim), function(i) { ifelse( stim[i]==stri_sub(history[i],-2,-2) || stim[i]==stri_sub(history[i],-4,-4), 'lure', as.character(stim_type[i]) ) }) as.factor(res) } with_targets_ratio <- function(correct, history = c(), block_size=NA) { if (is.na(block_size)) block_size = str_length(history) sapply(1:length(correct), function(i) { 0 #TODO }) } with_lures_ratio <- function(stimulus_type, history) { res <- sapply(1:length(history), function(i) { trials <- stimulus_type[(i-str_length(history[i])):i] trials <- unlist(trials, use.names=FALSE) length(trials[trials=="lure"]) }) res } with_skewness_score <- function(history) { sapply(1:length(history), function(i) 0) } with_lumpiness_score <- function(history) { sapply(1:length(history), function(i) 0) } with_history <- function(stims, max=8) { res <- c('') for (i in 2:length(stims)) { res[i] <- stri_sub(paste(res[i-1], stims[i], sep=''),from=-max,length=max) } res } normalize_scores <- function(targets_ratio, lures_ratio, skewness, lumpiness) { sapply(1:length(targets_ratio), function(i) 0) } NB_modified <- NB %>% group_by(participant, condition, block) %>% mutate(history = with_history(stimulus)) %>% #mutate(stimulus_type = map_chr(.x=stimulus, stim_type=stimulus_type, history=history,.f=with_lures)) mutate(stimulus_type_2 = with_lures(stimulus, stimulus_type, history)) %>% mutate(targets_ratio = with_targets_ratio(correct)) %>% mutate(lures_ratio = with_lures_ratio(stimulus_type_2, history)) %>% mutate(skewness = with_skewness_score(history)) %>% mutate(lumpiness = with_lumpiness_score(history)) %>% #normalize_scores(targets_ratio, lures_ratio, skewness, lumpiness) %>% ungroup() # print NB_modified %>% filter(participant=='P1', lures_ratio>0) %>% View() ``` #TODO modified_NB <- NB %>% mutate(constraint1=fitness1(history), constrain2=fitness2(history), constraint3=fitness(history)) kmeans(NB) ggplot(kmeans$accuracy) ggplot(kmeans$rt)