NB_avg %>% mutate(cluster = dbscan::dbscan(cbind(accuracy,rts), eps = 0.5, minPts = 3)$cluster) %>% ggplot(aes(targets, accuracy, color=factor(cluster))) + ggtitle("targets (window = 8 trials)", "NOTE: each point is a single participant") + geom_point(alpha=0.3) + #geom_smooth(method='lm', se = F) + facet_wrap(~condition) NB_avg %>% ggplot(aes(lures, accuracy, color=condition)) + ggtitle("lures (window = 8 trials)", "NOTE: each point is a single participant") + geom_point(alpha=0.3) + geom_smooth(method='lm', se = F) NB_avg %>% ggplot(aes(skewness, accuracy, color=condition)) + ggtitle("skewness (window = 8 trials)", "NOTE: each point is a single participant") + geom_point(alpha=0.3) + geom_smooth(method='lm', se = F) NB_avg %>% ggplot(aes(lumpiness, accuracy, color=condition)) + ggtitle("lumpiness", "NOTE: each point is a single participant") + geom_point(alpha=0.3) + geom_smooth(method='lm', se = F) NB_avg %>% ggplot(aes(lumpiness, rts, color=condition)) + ggtitle("lumpiness (window = 8 trials)", "NOTE: each point is a single participant") + xlab("lumpiness") + ylab("Average RT") + geom_point(alpha=0.3) + geom_smooth(method='lm', se = F) nback <- NB_modified nback %>% mutate(block=as.factor(block)) %>% mutate(trial=as.factor(trial)) %>% mutate(condition=ifelse(condition=='2-back',2,3)) %>% #filter(condition=='3-back') %>% #mutate(correct=as.numeric(correct)) %>% inspect_cor(show_plot = T) averaged_nback <- NB_avg averaged_nback %>% mutate(condition=ifelse(condition=='2-back',2,3)) %>% inspect_cor(show_plot = T) base.df <- data.frame(x=100-base.roc$specificities, y=base.roc$sensitivities, auc = base.roc$auc[1], model="base") extd.df <- data.frame(x=100-extd.roc$specificities, y=extd.roc$sensitivities, auc = extd.roc$auc[1], model="extended") chance.df <- data.frame(x=1:100, y=1:100, model=" ", auc=50) library(tidyverse) library(ggrepel) dats <- rbind(extd.df, base.df, chance.df) to_auc_label <- function(model, auc) { paste(model, "\nAUC=", format(auc, digits=3), sep = "" ) } dats$label = NA dats[174,]$label = to_auc_label("Extended Model", dats[174,]$auc) dats[647,]$label = to_auc_label("Base Model", dats[647,]$auc) dats %>% ggplot(aes(x=x, y=y, group=model, color = model, linetype = factor(model))) + geom_path(size=0.8) + geom_label_repel(aes(label=label), na.rm = TRUE, box.padding = 1) + xlab("100% - Specificity") + ylab("Sensitivity") + theme_linedraw() + #scale_x_continuous(labels = scales::percent) + #scale_y_continuous(labels = scales::percent) + scale_fill_brewer(palette = "Greens") + scale_color_manual(values=c("black", "#808080", "gray")) + theme(legend.position = "none", text=element_text(size=16,family="Helvetica Neue Light")) #library(extrafont) #font_import(pattern = "Helvet.*") ggsave("fig1.png", plot = last_plot(), width = 4, height = 4) #embed_fonts("fig1.pdf") library(latex2exp) tex_labels <- c( TeX("Stimulus"), TeX("Vocabulary Size ($x_v$)"), TeX("Recent Lures Ratio"), TeX("Skewness"), TeX("Targets Ratio"), TeX("Lures Ratio"), TeX("$N$"), TeX("Recent Skewness"), TeX("Recent Lumpiness"), TeX("Recent Vocabulary Size"), TeX("Recent Targets Ratio") ) feat_names <- c( "Stimulus", "Vocabulary Size", "Recent Lures Ratio", "Skewness", "Targets Ratio", "Lures Ratio", "N", "Recent Skewness", "Recent Lumpiness", "Recent Vocabulary Size", "Recent Targets Ratio" ) #attStats(boruta_result) %>% # arrange(desc(meanImp)) %>% boruta_scores %>% mutate(feature = rev(feat_names)) %>% # ggplot(aes(x=reorder(feature,meanImp,), y=meanImp, fill=decision, label=meanImp)) + ggplot(aes(x=reorder(feature,meanImp,), y=meanImp, label=meanImp)) + geom_bar(stat = "identity",width = 0.75) + #geom_text(size = 3, position = position_stack(vjust = 1.2)) + ylab("Relative Importance Score") + xlab("Feature") + theme_linedraw() + scale_fill_manual(values=c("#303030","#a0a0a0")) + labs(fill = "Feature Selection Decision") + theme( text=element_text(size=16), axis.title.y = element_blank(), axis.text.x = element_text(size = 14,colour = "#a0a0a0"), axis.text.y = element_text(size = 22), axis.title.x = element_text(size = 22), legend.position = "none", # legend.position = c(.95, .15), legend.justification = c("right", "top"), legend.box.just = "right", legend.margin = margin(5, 5, 5, 5) ) + coord_flip() ggsave("fig2.png", plot = last_plot(), width = 9, height = 4.75)