--- title: "Statistical Properties of the N-Back Sequences" output: html_notebook: default pdf_document: default --- # Problems Statistical properties of n-back sequences bias behaviors. These bias, under specified structure, allows multiple cognitive strategies, producing heterogeneous behavior in a "gold standard" cognitive task. # Gaps - Unclear how to parameterize interesting variations for sequence generation - How do we model these multiple strategies (which requires identifying which sequence variations matter) - local vs. global properties, which one matters the most? - Local: lumpiness, short sequence patterns -> could be exploited by “reactive”/automaticity - Global: No lures, large vocabulary -> pattern repeats implies a target ## Formulating Generating the N-Back Sequences as a CSP instance $P=\langle V,D,C,W\rangle$ $V=\{x_N,x_{T},x_{T,local},x_L,x_{L,local},x_V,x_U,x_S,x_{S,local},x_G\}$ $D=\{\}$ Constraints: $$ \\ x_n = N, W_n = 1 - |10 \times dnorm(x_n-N,sd=4)| \\\\ x_t = T \times trials, W_t = 1 - |10\times dnorm(T\times trials-x_t,sd=4)| \\\\ x_{tl} = {T \times w \over trials}, W_{tl} = 1 - |10\times dnorm(x_{tl} - {T \over trials} \times w,sd=4)| \\\\ x_{l} = L \times trials \\\\ x_{ll} = L \times w \\\\ x_{v} = |V| \\ x_{ul} = w \\\\ x_{s} = {trials \over |V|} \\\\ x_{sl} = max(1, {w \over |V|}) \\\\ x_{g} = {trials \over w} \\\\ x_{vl} = min(|V|, w) $$ ```{r libraries, message=FALSE, include=FALSE, paged.print=FALSE} library(ggplot2) library(tidyverse) library(stringi) library(pls) #library(plsRglm) #library(plsdof) library(pls) library(caret) library(here) library(tsibble) ``` ```{r preprocessing} load(here('data/CL2015.RData')) window_size <- 8 with_lures <- function(stimulus, stimulus_type, n) { sapply(1:length(stimulus), function(i) { lures <- c(as.character(stimulus[i-n-1]), as.character(stimulus[i-n+1])) are_valid_trials <- i>n && all(!is.na(c(lures,stimulus[i]))) ifelse(are_valid_trials && stimulus[i] %in% lures, "lure", as.character(stimulus_type[i])) }) } NB2 <- NB %>% group_by(participant, condition, block) %>% mutate(n = ifelse(condition=='2-back',2,3)) %>% mutate(stimulus_type = with_lures(stimulus, stimulus_type, n)) %>% mutate(tl = slide_dbl(stimulus_type, ~length(which(.=='target')), .partial=T,.size=window_size)) %>% mutate(ll = slide_dbl(stimulus_type, ~length(which(.=='lure')), .partial=T, .size=window_size)) %>% mutate(sl = slide_dbl(stimulus, ~sum(sort(table(.), decreasing = T)[1:2]) - 1, .partial=T, .size=window_size)) %>% mutate(ul = slide_dbl(stimulus, ~max(table(.))-1, .partial=T, .size=window_size)) %>% mutate(vl = slide_dbl(stimulus, ~length(unique(.)), .partial=T, .size=window_size)) %>% mutate(t = length(which(stimulus_type=='target'))) %>% mutate(l = length(which(stimulus_type=='lure'))) %>% mutate(s = sum(sort(table(stimulus), decreasing = T)[1:2]) - 1) %>% mutate(v = length(unique(stimulus))) %>% # replace NAs in sl column mutate(sl = ifelse(is.na(sl), 0, sl)) %>% nest(.key='design_matrix') # Models NB2 <- NB2 %>% mutate(model.lm = map(design_matrix, ~lm(rt~.,.x))) %>% mutate(model.pls = map(design_matrix, ~plsr(rt ~ ., data = .x, validation = "CV"))) #mutate(model.pca = map(design_matrix, ~prcomp(~rt,.x, center=T,scale.=T, na.action=na.exclude))) %>% #mutate(pc1=pca$x[,'PC1'], pc2=pca$x[,'PC2']) # caret library(caret) # Compile cross-validation settings any(is.na(NB2)) NB2 <- na.omit(NB2) # set.seed(100) # trainingfold <- createMultiFolds(NB2@correct, k = 5, times = 10) # # # PLS # mod1 <- train(correct ~ ., data = NB2[,c("correct","x_sl","x_ul","x_t","x_l")], # method = "pls", # metric = "Accuracy", # tuneLength = 20, # trControl = trainControl("repeatedcv", index = trainingfold, selectionFunction = "oneSE"), # preProc = c("zv","center","scale")) # # # Check CV # plot(mod1) plsResult <- plsR(rt ~ ., data=NB2[,c("rt","x_sl","x_ul","x_t","x_l")],3) plsResult <- plsR(correct ~ ., data=NB2[,c("correct","x_sl","x_ul","x_t","x_l")],3) plsResult ```