Newer
Older
notebooks / ddm_playground.ipynb
Morteza Ansarinia on 12 May 2019 15 KB init
{
  "cells": [
    {
      "cell_type": "code",
      "execution_count": 3,
      "metadata": {
        "collapsed": true,
        "pycharm": {
          "is_executing": false
        }
      },
      "outputs": [
        {
          "data": {
            "text/plain": "\u003cFigure size 432x288 with 1 Axes\u003e",
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8VNX9//HXZ7Lve0gIkLCEHQISQBZZFL+CC9SfomJVUNS6YLW1X+v3q19t7epSbVVaRMV9qUtFtFhqFURkDbLvCVtCEshCAlnJcn5/ZGLHNJAJzMxNZj7Px4NHJ3PvzP30cn3ncO6554gxBqWUUt7FZnUBSimlXE/DXSmlvJCGu1JKeSENd6WU8kIa7kop5YU03JVSygtpuCullBfScFdKKS+k4a6UUl7I36oDx8fHm7S0NKsOr5RSndLGjRuLjTEJbe1nWbinpaWRlZVl1eGVUqpTEpFDzuyn3TJKKeWFNNyVUsoLabgrpZQX0nBXSikvpOGulFJeSMNdKaW8kIa7Ukp5IcvGufuywyVVbDxcSn5ZDQBJkcEM7BpJ/6QIRMTi6pRS3kDD3YNW7DnGn77Yx6bDZa1uT44K5qrzunHT2FQSI4I9XJ1SyptouHtARW09jyzezt82HaF7bAgPXTqACX0TSI0LBSDveDXfHj7OP7YXMn9FNgtX7mfOuDTuubAPEcEBFlevlOqMxBhjyYEzMzONL0w/UFp5ijmvrGf7kXLuuTCduyf3IdD/9Lc6DhRXMn95Nh9szCMhIojHrxrChf27eLBipVRHJiIbjTGZbe2nN1TdqOpUPbMXrWdP4UkW3pjJTy7ue8ZgB+gZH8ZTMzNYfPc44sICueXVLB5evI2augYPVa2U8gYa7m5ijOFn729hR345f/7heUwZ2L7W97Du0Xw8bxy3XdCTN9ce5tqFazl6osZN1SqlvI2Gu5v8dUMuS7cV8vOp/blowNl1qwT5+/HQZQN54cYR7Dt6kunPr2JrXus3Y5VSypGGuxsUlFfz2Kc7Gdcnjtsu6HXO33fJoCQ+vHMs/jYb1y1cyzfZxS6oUinlzTTc3eDxz3ZT32j4/f8bis3mmnHrA5Ij+eiusXSPCeXmVzbwj+2FLvlepZR30nB3sW8PH2fx5nxuu6An3WNDXfrdiZHB/PVH5zMoJZK73trI4k1HXPr9SinvoeHuYn/45x7iw4O4a1Ift3x/dGggb84dzeiecfz0vc18ujXfLcdRSnVuGu4utCW3jG+yS7h9Qk/Cgtz3fFhYkD8vz8lkRGoM9767mWU7tItGKfV9Gu4utOCrHCKD/Zk1qofbjxUa6M+iOSMZkhLFvLe/ZfnuY24/plKq89Bwd5HDJVX8Y0chN45J9diUARHBAbx2yyj6JUVwx5sb2Xio1CPHVUp1fBruLvLXrMMIcMP5qR49blRIAK/dPIrkqGDmvpZF9rGTHj2+Uqpj0nB3gfqGRt7PymNSv0SSo0I8fvy48CBev2U0/jYbsxdtoLBcn2RVytdpuLvAij1FHDtZy7Uju1tWQ4+4UF69eSRlVU0TlZVX11lWi1LKehruLvDBxjziwwO5sH+ipXUMToliwY0jyCmq4PbXs6it18nGlPJVGu7nqLK2nuV7jnHpkGQC/Kw/nRekJ/DUzAzWHSjlfz7chlVTOiulrKWLdZyjFXuKqK1vZNrgZKtL+c6MYSkcLK7imX/tpXdiOHdPds8DVUqpjkvD/Rwt3VZAfHggo3rGWl3K9/z4oj4cKK7gyWV7SIsL47KhHeeXj1LK/azvR+jEqk818OXuY1wyKAk/F00Q5ioiwu+vGsqI1Bh++t5mNufqVMFK+RIN93OwZn8x1XUNTB2cZHUprQoO8GPhjSNIjAzi1teyOFJWbXVJSikP0XA/B1/tKSIkwI+RaR2rS8ZRXHgQi2aPpLa+gbmvbqCitt7qkpRSHuBUuIvIVBHZIyLZIvLgGfa7WkSMiLS5eKs3+GpvEWN6xxEc4Gd1KWeU3iWCv/xwBPuOVfDjdzbR0KgjaJTydm2Gu4j4AfOBacBAYJaIDGxlvwjgx8A6VxfZER0sruRgSRUT+yZYXYpTxqfH89iMQXy5+xi/W7rL6nKUUm7mTMt9FJBtjNlvjDkFvAvMaGW/XwFPAD7x7PtXe4sAOk24A/xwdCpzxqbx0qoDvLv+sNXlKKXcyJlwTwFyHX7Os7/3HREZDnQ3xnzqwto6tK/3FZEaF0pafJjVpbTLw5cNYELfBB5evJ01OSVWl6OUchNnwr21MX7fddqKiA14Bri/zS8SuV1EskQkq6ioyPkqO5iGRsP6A6WM6RVndSnt5u9n4/nrh5MWH8adb23kUEml1SUppdzAmXDPAxxnxOoGOK7tFgEMBlaIyEHgfGBJazdVjTELjTGZxpjMhITO053R0p7Ck5yoqe9wDy45KzI4gJdnN/313PLqBk7U6CRjSnkbZ8J9A5AuIj1FJBC4DljSvNEYU26MiTfGpBlj0oC1wHRjTJZbKu4A1h1o6s4Y3Qlb7s1S48JYcMMIDpVUMe/tTdQ3NFpdklLKhdoMd2NMPTAPWAbsAt4zxuwQkcdEZLq7C+yI1h8oJSU6hJRoz8/d7krn94rjN1cOZuXeIn79dx1Bo5Q3cWpuGWPMUmBpi/ceOc2+k869rI7LmKb+9s40SuZMrh3Zg31HK3hp1QH6JIZ7fCUppZR76BOq7ZRTVElJ5alO29/emv+5dACT+yXw6JIdrM4utrocpZQLaLi3U/MEXCNSYyyuxHX8bMKzs4bTOyGMO9/6lv1FFVaXpJQ6Rxru7bQlt4zwIH96JYRbXYpLRQQH8PLskfjZhFtfy6K8SkfQKNWZabi305a8MoakRHW4KX5doXtsKC/cOILc41Xc9fZG6nQEjVKdloZ7O9TWN7Cr4AQZ3aOtLsVtRqbF8tsrh/BNdgmPfbLT6nKUUmdJV2Jqh10FJ6lrMGR0i7K6FLeamdmd7KIKXvhqP+ldwrlpTJrVJSml2knDvR222G+menPLvdkDl/Qn51glv/xkJ2lxYUzwkqGfSvkK7ZZphy25ZSREBJEcFWx1KW7nZxP+eN0w0hPDufvtb8k+piNolOpMNNzbYXNeGRndohHxvpuprQkP8uel2ZkE+duY+9oGjleesrokpZSTNNydVFFbz/6iSoZ6eX97S91iQnnhxkwKymq4862NnKrXETRKdQYa7k7aU3gCgIHJkRZX4nkjUmN4/OohrN1fyqNLtmOMLtOnVEenN1SdtKvgJAADuvpeuANcObwb2ccqmL88h/TECG4Z39PqkpRSZ6Dh7qTdhSeICPanqw/cTD2d+y/uR/axCn799530TAhjcr9Eq0tSSp2Gdss4aVfBSQYkRfrMzdTW2GzCM9cOo39SJPe8vYm9R09aXZJS6jQ03J3Q2GjYU3iS/skRVpdiudDAphE0IYF+zH1tA6U6gkapDknD3QlHyqqpqK2nf5Jv9re31DU6hBdvyuTYiVrueGMjtfUNVpeklGpBw90JuwqaRsoM0Jb7d4Z1j+bJmRmsP1jKwx/pCBqlOhq9oeqEXQUnEYG+XTTcHU3P6Er2sQqe/WIf6V3CuX1Cb6tLUkrZabg7YXfhCVJjQwkL0tPV0n0XpZNzrILffbabXvHhTBnYxeqSlFJot4xT9hSepF+SttpbY7MJT83MYHDXKO59dxM7809YXZJSCg33NtXWN3CotEq7ZM4gJNCPF2/KJDIkgDmvrCfveJXVJSnl8zTc23C4pIqGRkNvL1tWz9WSooJ59eZRVNc1MHvResqqdIikUlbScG9D81S3Gu5t65cUwYs3ZZJbWs2tr2VRU6dDJJWyioZ7G3KKmsK9V0KYxZV0Duf3iuOZa4ex8fBx7n13Ew2NOkRSKStouLch+1gFXaOCdaRMO1w2NJlHLh/Ish1H+cWSHToGXikLaGK1Iaeokt6J2iXTXjeP60lheQ0vrNxPUlQwd0/uY3VJSvkUbbmfgTGGnKIK7W8/Sz+f2p8fDOvKk8v28MHGPKvLUcqnaMv9DArKa6g61aAt97NkswlPXJ1BUUUtD364lbjwQJ0mWCkP0Zb7GTTfTO2jLfezFuhvY8ENI+ifHMGdb25k/YFSq0tSyidouJ9BTvMwyEQdKXMuIoIDeO3mUXSNDmHuqxvYfqTc6pKU8noa7meQXVRBRLA/CeFBVpfS6cWFB/Hm3NFEhgQwe9H67/5VpJRyDw33MzhQXEmvhHCfXn3JlbpGh/DG3FGIwI0vrSO/rNrqkpTyWhruZ3CopIq0uFCry/AqvRLCee2WUZysreeGl9dRXFFrdUlKeSUN99M4Vd9Iflk1qbEa7q42qGsUr8wZSX5ZNbMXredETZ3VJSnldZwKdxGZKiJ7RCRbRB5sZfsdIrJNRDaLyCoRGej6Uj0r73gVjQZS4/RmqjtkpsWy4IYR7D16kltfzaLqVL3VJSnlVdoMdxHxA+YD04CBwKxWwvttY8wQY8ww4AngaZdX6mGHSpqmrU3Vbhm3mdQvkT9eO5ysQ6U60ZhSLuZMy30UkG2M2W+MOQW8C8xw3MEY47hCQxjQ6ScTOVRSCWjL3d0uG5rMH67JYM3+Em57XQNeKVdxJtxTgFyHn/Ps732PiNwtIjk0tdx/7JryrHOwpIrQQD/iwwOtLsXrXTm8G49fNZSv9xVz55sbqa3XgFfqXDkT7q2NA/yPlrkxZr4xpjfwc+DhVr9I5HYRyRKRrKKiovZV6mGHS6tIjQvTYZAeck1md3575RCW7yli3tubqGtotLokpTo1Z8I9D+ju8HM3IP8M+78L/KC1DcaYhcaYTGNMZkJCgvNVWuBgSaWOlPGw60f34LEZg/h851HufXcT9RrwSp01Z8J9A5AuIj1FJBC4DljiuIOIpDv8eBmwz3Ulel5DoyGvtJrUeA13T7tpTBoPXzaApdsK+cl7W3SxD6XOUpuzQhpj6kVkHrAM8AMWGWN2iMhjQJYxZgkwT0SmAHXAcWC2O4t2t4Lyak41NJIaqzdTrXDrBb2obzT8/rPd+Ak8NTMDfz99JEOp9nBqyl9jzFJgaYv3HnF4fa+L67LUYfswSH061Tp3TOxNQ6PhyWV7qGs0/PHaYQRowCvlNJ3PvRWHSpvCvYeGu6XuntyHQD8bv1m6i/qGRp6bdR6B/hrwSjlD/0tpxcGSSgL9bCRHhVhdis+7bUIvfnFF03qsd7y5UcfBK+UkDfdWHC6poltsCH42HQbZEcwZ15PfXjmEL3cf47bXs6g+pQGvVFs03FtxqKRKh0F2MNeP7sETVw9lVXYxt7y6QeeiUaoNGu6tyDteRbcYDfeO5prM7jxzzTDWHSjR2SSVaoOGewsnauo4UVNPtxjtb++IfjA8hedmncfm3DJmLVyr88ErdRoa7i0cOd60OpC23Duuy4Ym8+JNmeQUVXDNgjXkHa+yuiSlOhwN9xby7OGeoi33Dm1Sv0TenDua4opaZi5YQ/axk1aXpFSHouHewhF7K1C7ZTq+zLRY/vqjMdQ1GGYuWMOW3DKrS1Kqw9BwbyHveDXBATbiwnSq385gQHIkH945hvBgf65/cS2rs4utLkmpDkHDvYUjZdWkRIfoVL+dSGpcGB/cMZaUmBDmvLKBz7YVWF2SUpbTcG8h73g1KXoztdPpEhnMez8aw+CUSO56+1sWrTpgdUlKWUrDvYWmMe7a394ZRYcG8tat53PxgC489ulOfvXpThp1ymDlozTcHVTW1nO8qo6UaA33ziok0I+/3DCCOWPTeHnVAe55Z5POR6N8ks4K6eBIWfMYdw33zszPJjx6xUBSokP4zdJdHDtZw4s3ZRIdqjfJle/QlruDfz/ApOHe2YkIt03oxXOzhrMlt5yr/rKa3FJ92En5Dg13B3nfjXHXG6re4oqMrrwxdxRFJ2u58s+r2axj4ZWP0HB3kFdWTaCfjYTwIKtLUS40ulccf7trLCGBNq59YQ1LtpxpfXelvIOGu4O849V0jQ7GpvO4e50+iRF8fPd4MrpF8+N3NvH053t1JI3yahruDvKOV2uXjBeLDQvkzVtHM3NEN579Yh/z3vlWF/5QXkvD3cGR49U6DNLLBfrbeOLqoTx06QA+217INS+sobC8xuqylHI5DXe72voGiitq6arh7vWaR9K8dFMm+4sqmP78Kp10THkdDXe7o+VNiz4kRwVbXInylIsGdOHDu8YS4Gdj5gtr+GBjntUlKeUyGu52BeVNY9yTozXcfUn/pEiWzBtHZmoMP3t/C/+3eDun6hutLkupc6bhbldg73fVlrvviQsP4vVbRnH7hF68sfYQs15cy9ET2g+vOjcNd7vmcE+K0j53X+TvZ+N/Lx3Ac7OGszP/BJc/t4qsg6VWl6XUWdNwtysoryYi2J/wIJ1ux5ddkdGVxXePIzTQj+sWruX1NQcxRsfDq85Hw92uoLyGrtpqV0C/pAiWzBvPhL4JPPLxDn763hYqa+utLkupdtFwtysor9abqeo7USEBvHRTJj+Z0pfFm48w/flV7CnURbhV56HhbldYXqM3U9X32GzCvVPSeWvuaMqr65kxfxXvbcjVbhrVKWi40/wA0ymStVtGtWJsn3iW3jueEakxPPDhVu7XbhrVCWi4w3ePnydpy12dRmJEMK/fMpqfTOnLR9pNozoBDXf+PQxSb6iqM/FrpZvmzbWHtJtGdUga7vz76VRtuStnNHfTjEyL5eHF27nt9SxKKmqtLkup73Eq3EVkqojsEZFsEXmwle0/FZGdIrJVRL4QkVTXl+o++nSqaq/EiGBeu3kUj1w+kJV7i5n6p69ZseeY1WUp9Z02w11E/ID5wDRgIDBLRAa22G0TkGmMGQp8ADzh6kLdqaCshshgf8L0ASbVDjabcMv4nnw8bxyxoYHMeWUDv1iyg5o6nSNeWc+ZlvsoINsYs98Ycwp4F5jhuIMxZrkxpnn14bVAN9eW6V4F5TU61a86awOSI/l43jjmjE3j1dUHmfH8N+wuPGF1WcrHORPuKUCuw8959vdOZy7wWWsbROR2EckSkayioiLnq3SzgvJq7W9X5yQ4wI9fTB/EqzePpKTyFNOf+4YXvsqhQZfyUxZxJtxbW1C01StWRG4AMoEnW9tujFlojMk0xmQmJCQ4X6WbNT3ApC13de4m9Utk2X0XMLl/Ar/7bDdXL1hNTlGF1WUpH+RMuOcB3R1+7gb8x/LxIjIFeAiYbozpNEMHauoaKKk8pTdTlcvEhQex4IYR/Om6YewvquTSP33NS1/v11a88ihnwn0DkC4iPUUkELgOWOK4g4gMB16gKdg71ZCB5nm7NdyVK4kIM4al8PlPJnBBegK//vsurn1hDQeKK60uTfmINsPdGFMPzAOWAbuA94wxO0TkMRGZbt/tSSAceF9ENovIktN8XYeTX9Yc7toto1wvMTKYF28awTPXZrD36Emm/Wkli1Yd0Fa8cjunxv4ZY5YCS1u894jD6ykurstjCk/o8nrKvUSEK4d3Y2zveP73b9t47NOdfLI1n9/9vyH0T4q0ujzlpXz+CdV/t9w13JV7dYkM5qXZmTxzbQaHSqq4/NlVPLlst46LV27h8+FeWF5DVEgAoYH6AJNyv+ZW/Bc/ncgPhqcwf3kOU/+4ktXZxVaXpryMz4d7QXm1ttqVx8WEBfLUzAzeunU0Brj+pXX87P0tHK88ZXVpyktouOsiHcpC4/rEs+y+Cdw1qTeLNx3hoqe/4sONeTrTpDpnGu7lNSTr1APKQsEBfjwwtT+f/ng8qXGh3P/+FmYuWMPOfJ3CQJ09nw73mroGSitPkRypLXdlvf5JkXx4x1ieuGoo+4srufy5r3n04+2UV9dZXZrqhHw63JtXYNKWu+oobDbhmpHdWX7/JG48P5U31h7iwqdW8N6GXBp1bLxqB58Od53HXXVUUaEB/HLGYD65Zzw948N44MOtXLVgNdvyyq0uTXUSPh3u3z3ApOGuOqhBXaN4/44x/GFmBrml1Uyfv4r739vy3b86lTodnw73Al0YW3UCIsJVI7rx5c8m8qMJvflkSz6TnlrO05/vpbK23uryVAfl0+FeWN60ApM+wKQ6g8jgAB6c1p8v7p/IlAFdePaLfUx+agXvZeXqXDXqP/h0uBfoPO6qE+oeG8rz15/Hh3eOpWt0CA98sJUrnlulT7mq7/HpcC8sr9EuGdVpjUiN4aO7xvLsrOGUV9dx/UvrmPPKenbk601X5ePhrk+nqs5ORJie0ZUv7p/Ig9P6s+lwGZc9u4p73tnEQZ073qf5bLifqm+kuKJWW+7KKwQH+HHHxN6sfGAyd0/uzb92HuWip7/ifz/apiNrfJTPhruuwKS8UVRIAP99SX++emASN4zuwftZuUx8cjm/W7pLJyXzMT4b7oUnmodB6g1V5X0SI4L55YzBfHn/JC4bkszCr/cz4Ynl/OGfeyir0pD3BT4b7vp0qvIF3WNDefraYfzj3gmMT4/nuS+zGf/4cp5ctltb8l7OZ8P9qD7ApHxIv6QI/nLDCP5x3wVM7JvAn1fkMP7xL3n8H7sp1ZD3Sj779E5BeQ1hgX5EBPnsKVA+qH9SJPN/eB57j57k2S/2seCrHF5bfZAbx6Ry+wW9iAsPsrpE5SI+23IvPFFNUlQwImJ1KUp5XN8uETx//Xn8874JTBnQhYUr9zPu8S959OPt5JZWWV2ecgGfDXd9OlUpSO8SwbOzhvP5TyZy+dCuvLXuMJOeWsF9725iV4EuFtKZ+Wy469OpSv1bn8RwnpqZwdc/n8zNY9P4fOdRpv3pa+a8sp61+0t02b9OyCfDvb6hkWMna3WkjFItJEeF8PDlA1n94EX87L/6si2vnOsWruXKP6/mH9sLdYKyTsQn7yYWV5yiodFoy12p04gKDWDehencekEv3t+Yx4sr93PHmxvpHhvC7DFpXDOyO5HBAVaXqc7AJ1vuBeW6SIdSzggO8OPG81P58v6JLLjhPJIjQ/j133cx5rdf8OjH2zmg89d0WD7Zcm+eayMpUm+oKuUMfz8bUwcnM3VwMtuPlLPomwO8sz6X19ceYnK/RG4Z15NxfeJ09FkH4qMtd306VamzNTgliqevGcaqByfz4wvT2ZpXxg0vr+O/nlnJ62sOcqKmzuoSFT4a7oUnagjytxEdqn2GSp2txIhgfnJxX7558EKemplBcIAfj3y8g9G/+YIHP9zK9iM6r7yVfLJbpnked/0npFLnLsjfj6tHdOPqEd3YmlfGW2sPs3jzEd7dkEtGtyh+ODqVKzK6EhLoZ3WpPsU3W+7l1TpSRik3GNotmsevHsq6/53CL6cPoupUAw98uJVRv/0Xv1iyg71HT1pdos/w2Zb7yLRYq8tQymtFhQQwe2waN41JZcPB47y17hBvrzvMq6sPktEtiqszuzN9aFeitGvUbXwu3BsbDcdO6ApMSnmCiDCqZyyjesby6BWnWLzpCO9l5fJ/i7fzq093csmgJGaO6Ma4PvH42bSb1JV8LtxLq05xqqGRpEgNd6U8KTYskFvG9+TmcWnsyD/B+1m5LN6czydb8ukaFcxV9n771Lgwq0v1Ck71uYvIVBHZIyLZIvJgK9sniMi3IlIvIle7vkzXKdR53JWylIgwOCWKX84YzPqHLmL+9efRNymC+cuzmfjkCq7+y2reWHOQkopaq0vt1NpsuYuIHzAfuBjIAzaIyBJjzE6H3Q4Dc4CfuaNIV8ov06dTleoogvz9uGxoMpcNTaawvIa/bcrj4035/N/HO/jFJzuZkB7PjGEpXDywC2G69kK7OHO2RgHZxpj9ACLyLjAD+C7cjTEH7dsa3VCjSzWHe9dofTpVqY4kKSqYuyb14a5JfdhdeILFm5q6bO7762ZCAvy4eGAXZgzrygXpCQT6++RAv3ZxJtxTgFyHn/OA0WdzMBG5HbgdoEePHmfzFefsSFk1Qf424sICLTm+Uqpt/ZMieXBaJA9c0o+Nh4+zeNMR/r6tgCVb8okODWDa4CSmDU5mTO84Avw06FvjTLi3dgv7rOb9NMYsBBYCZGZmWjJ3aH5ZDSnRIfoAk1KdgM0mjEyLZWRaLI9eMYiv9xXx8eZ8lmzO5531uUSFBHDxwC5cOiSJcX3iCfLXB6WaORPueUB3h5+7AfnuKcf98sqqSYnRLhmlOptAfxsXDejCRQO6UFPXwNf7ivlsWwHLdhTywcY8IoL8mTKwC9MGJzGhbwLBAb4d9M6E+wYgXUR6AkeA64Dr3VqVGx05Xs2AAYlWl6GUOgfB9j74iwd2oba+gdXZJXy2vYB/7jzKR5uOEBrox+T+ifzXwC5M6pvokw9LtRnuxph6EZkHLAP8gEXGmB0i8hiQZYxZIiIjgY+AGOAKEfmlMWaQWys/CzV1DRRX1OrNVKW8SJB/U5BP7p/IbxoaWbe/lKXbC/jnjqP8fWsBfjZhZFoMU+yt/p7xvjGOXqxaGzEzM9NkZWV59JgHiiuZ/NQK/jAzg6tGdPPosZVSntXYaNiSV8a/dh3li13H2F3YNK9N74QwpgzswpQBXTivR0ynezJWRDYaYzLb2s+nBo4eOd40DFL73JXyfjabMLxHDMN7xPDfl/Qnt7SKL3Yd5V+7jvHy1wd44av9xIYFMqlvAhP6JnBBejxx4UFWl+0yvhXuZVUApGi3jFI+p3tsKHPG9WTOuJ6cqKlj5d4i/rXzKMv3HONvm44gAoO7RjHRHvbDe0R36mGWPhbuNdhEpx5QytdFBgdw+dCuXD60Kw2Nhu1Hylm5t4iv9hbxl69yeH55NhFB/oztE8fEvolM6BtPt5hQq8tuF98K9+PVdIkM7tS/jZVSruVnEzK6R5PRPZp7LkqnvLqO1dnFrNxXxFd7ili24ygAveLDGNsnjrG94zm/VxyxHfxBSN8K97IqHSmjlDqjqJAApg1JZtqQZIwx5BRVsGJPEatzSvjo2yO8ufYwAP2TIhjbO56xveMY1SuWyOCONdzSx8K9muHdY6wuQynVSYgIfRIj6JMYwa0X9KKuoZFtR8pZk1PC6pxi3lp3iEXfHMAmMKRbNGN7xzGmVxwjUmMsn+jMZ8K9odFQWF5DylBtuSulzk6An43zesRwXo8Y7p7ch5q6BjYdLmNNTjGEGYQvAAAJiklEQVSrc0p4ceV+/rIiBz+bMKhr5HdTJ4xMi/H4SByfCfeik7XUNRjtllFKuUxwgB9jescxpnccPwUqa+vJOnScDQdKWX+wlDfWHuLlVQeApvH1o3o2hf34PvEkunnBIJ8J98OlTcMgu+sYd6WUm4QF+TOxbwIT+yYAUFvfwLa8ctYfLGXDgVI+3VLAO+tz+dWMQdw4Js2ttfhMuB8qqQQgTZfwUkp5SJC/H5lpsWSmxcKkpu7h3YUn6OKBZT59KNyr8LOJPp2qlLJMU198lEeO5TMDvg+VVpESHaJj3JVSPsFnku5QSSWpcZ3rCTOllDpbPhTuVRruSimf4RPhXlZ1ivLqOr2ZqpTyGT4R7odKmoZB9ojVlrtSyjf4RLgftA+DTNWWu1LKR/hEuOccq8DPJqTFa8tdKeUbfCLc9x6tIDUulCB/314NXSnlO3wj3I+dJD0x3OoylFLKY7w+3GvrGzhUUkXfLhFWl6KUUh7j9eF+oLiShkZDH225K6V8iNeH+96jFQDacldK+RSvD/d9R09iE+gZr8MglVK+w+vDfUf+CXolhBMcoCNllFK+w6vD3RjD1rwyMrpFW12KUkp5lFeH+5GyaoorTpHR3TPzJyulVEfh1eG+Na8cQFvuSimf49XhnnXwOIH+Nvon60gZpZRv8epwX5VdxKi0WJ12QCnlc7w23AvLa9h7tIIL0uOtLkUppTzOa8N95d4iAMZruCulfJDXhvuSLfn0iA1lYHKk1aUopZTHORXuIjJVRPaISLaIPNjK9iAR+at9+zoRSXN1oe1xoLiSb3KK+cHwFETEylKUUsoSbYa7iPgB84FpwEBglogMbLHbXOC4MaYP8AzwuKsLbY+nP99LoJ+NG89PtbIMpZSyjDMt91FAtjFmvzHmFPAuMKPFPjOA1+yvPwAuEguazKfqG5m/PJtPtuRz56TeJEQEeboEpZTqEPyd2CcFyHX4OQ8Yfbp9jDH1IlIOxAHFrijS0XsbcnlhZQ6NBuobG2lshIZGQ4MxnKypo6aukcuGJnP35D6uPrRSSnUazoR7ay1wcxb7ICK3A7cD9OjRw4lD/6eYsED6J0XiZxP8bIJNBH+bYLMJYYF+jE+PZ2LfBO1rV0r5NGfCPQ/o7vBzNyD/NPvkiYg/EAWUtvwiY8xCYCFAZmbmf4S/My4e2IWLB3Y5m48qpZTPcKbPfQOQLiI9RSQQuA5Y0mKfJcBs++urgS+NMWcV3koppc5dmy13ex/6PGAZ4AcsMsbsEJHHgCxjzBLgZeANEcmmqcV+nTuLVkopdWbOdMtgjFkKLG3x3iMOr2uAma4tTSml1Nny2idUlVLKl2m4K6WUF9JwV0opL6ThrpRSXkjDXSmlvJBYNRxdRIqAQ2f58XjcMLWBC2hd7aN1tV9HrU3rap9zqSvVGJPQ1k6Whfu5EJEsY0ym1XW0pHW1j9bVfh21Nq2rfTxRl3bLKKWUF9JwV0opL9RZw32h1QWchtbVPlpX+3XU2rSu9nF7XZ2yz10ppdSZddaWu1JKqTPocOF+Lotxi8j/2N/fIyKXeLiun4rIThHZKiJfiEiqw7YGEdls/9NyumR31zVHRIocjn+rw7bZIrLP/md2y8+6ua5nHGraKyJlDtvceb4WicgxEdl+mu0iIs/a694qIuc5bHPL+XKiph/aa9kqIqtFJMNh20ER2WY/V1muqqkdtU0SkXKHv69HHLad8Rpwc13/7VDTdvs1FWvf5pZzJiLdRWS5iOwSkR0icm8r+3ju+jLGdJg/NE0pnAP0AgKBLcDAFvvcBSywv74O+Kv99UD7/kFAT/v3+HmwrslAqP31nc112X+usPB8zQGeb+WzscB++//G2F/HeKquFvvfQ9NU0m49X/bvngCcB2w/zfZLgc9oWl3sfGCdB85XWzWNbT4WTQvVr3PYdhCIt/B8TQI+PddrwNV1tdj3CprWmHDrOQOSgfPsryOAva389+ix66ujtdzPZTHuGcC7xphaY8wBINv+fR6pyxiz3BhTZf9xLU0rVrmbM+frdC4BPjfGlBpjjgOfA1MtqmsW8I6Ljn1GxpiVtLJKmIMZwOumyVogWkSSceP5aqsmY8xq+zHBc9dW87HbOl+ncy7Xpqvr8sj1ZYwpMMZ8a399EthF0/rSjjx2fXW0cG9tMe6WJ+d7i3EDzYtxO/NZd9blaC5Nv52bBYtIloisFZEfuKim9tR1lf2fgB+ISPOSiR3ifNm7r3oCXzq87a7z5YzT1e7O89UeLa8tA/xTRDZK0xrFVhgjIltE5DMRGWR/r0OcLxEJpSkkP3R42+3nTJq6i4cD61ps8tj15dRiHR50LotxO7VI91ly+rtF5AYgE5jo8HYPY0y+iPQCvhSRbcaYHA/V9QnwjjGmVkTuoOlfPRc6+Vl31tXsOuADY0yDw3vuOl/OsOL6coqITKYp3Mc7vD3Ofq4Sgc9FZLe9Vesp39L0OHyFiFwKLAbS6QDny+4K4BtjjGMr363nTETCafplcp8x5kTLza18xC3XV0drubdnMW7k+4txO/NZd9aFiEwBHgKmG2Nqm983xuTb/3c/sIKm3+geqcsYU+JQy4vACGc/6866HFxHi38yu/F8OeN0tbvzfLVJRIYCLwEzjDElze87nKtjwEe4rivSKcaYE8aYCvvrpUCAiMRj8flycKbry+XnTEQCaAr2t4wxf2tlF89dX66+qXCONyT8abqR0JN/34QZ1GKfu/n+DdX37K8H8f0bqvtx3Q1VZ+oaTtMNpPQW78cAQfbX8cA+XHRjycm6kh1eXwmsNf++gXPAXl+M/XWsp+qy79ePpptb4onz5XCMNE5/g/Ayvn/Da727z5cTNfWg6R7S2BbvhwERDq9XA1Ndea6cqC2p+e+PppA8bD93Tl0D7qrLvr254RfmiXNm///9OvDHM+zjsevLpReBi07QpTTdZc4BHrK/9xhNrWGAYOB9+8W+Hujl8NmH7J/bA0zzcF3/Ao4Cm+1/ltjfHwtss1/c24C5Hq7rd8AO+/GXA/0dPnuL/TxmAzd7si77z78Aft/ic+4+X+8ABUAdTa2lucAdwB327QLMt9e9Dch09/lyoqaXgOMO11aW/f1e9vO0xf53/JArz5WTtc1zuL7W4vALqLVrwFN12feZQ9MgC8fPue2c0dRdZoCtDn9Xl1p1fekTqkop5YU6Wp+7UkopF9BwV0opL6ThrpRSXkjDXSmlvJCGu1JKeSENd6WU8kIa7kop5YU03JVSygv9f1Tj8jvY9VlqAAAAAElFTkSuQmCC\n"
          },
          "metadata": {
            "needs_background": "light"
          },
          "output_type": "display_data"
        }
      ],
      "source": "from ddm import Model\nimport matplotlib.pyplot as plt\n\n%matplotlib inline\n\nm \u003d Model()\ns \u003d m.solve()\nplt.plot(s.model.t_domain(), s.pdf_corr())\nplt.show()\n"
    }
  ],
  "metadata": {
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 2
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython2",
      "version": "2.7.6"
    },
    "kernelspec": {
      "name": "python3",
      "language": "python",
      "display_name": "Python 3"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}