Newer
Older
notebooks / VRC_PonderRNN.ipynb
{
 "cells": [
  {
   "cell_type": "markdown",
   "source": [
    "Building on [PonderNet](https://arxiv.org/abs/2107.05407), this notebook implements a neural alternative of the  [Variable Rate Coding](https://doi.org/10.32470/CCN.2019.1397-0) model to produce human-like responses.\n",
    "\n",
    "Given stimulus symbols as inputs, the model produces two outputs:\n",
    "\n",
    "- Response symbol, which, in comparison with the input stimuli, can be used to measure accuracy).\n",
    "- Remaining entropy (to be contrasted against a decision threshold and ultimateely halt the process).\n",
    "\n",
    "Under the hood, the model uses a RNN along with multiple Poisson processes to...\n",
    "\n",
    "\n",
    "## Resources\n",
    "\n",
    "- [Network model](https://drive.google.com/file/d/16eiUUwKGWfh9pu9VUxzlx046hQNHV0Qe/view?usp=sharinghttps://drive.google.com/file/d/16eiUUwKGWfh9pu9VUxzlx046hQNHV0Qe/view?usp=sharing)\n"
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Problem setting\n",
    "\n",
    "### Model\n",
    "Given input and output data, we want to learn a supervised model of the function $X \\to y$ as follows:\n",
    "\n",
    "$\n",
    "f: X,h_n \\mapsto \\tilde{y},h_{n+1}, \\lambda_n\n",
    "$\n",
    "\n",
    "where $X$ and $y$ denote stimulus and response symbols, $\\lambda_n$ denotes halting probability at time $n$, and $h_{n}$ is the latent state of the model. The learninig continious up to the time point $N$.\n",
    "\n",
    "For the brevity and compatibility, both data are one-hot encoded.\n",
    "\n",
    "\n",
    "### Input\n",
    "\n",
    "One-hot encoded symbols.\n",
    "\n",
    "### Output\n",
    "\n",
    "One-hot encoded symbols.\n",
    "\n",
    "### Criterion\n",
    "\n",
    "L = L_cross_entropy + L_halting"
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 206,
   "source": [
    "# Setup and imports\n",
    "import torch\n",
    "from torch import nn\n",
    "import torch.nn.functional as F\n",
    "from torch.utils.data import TensorDataset, DataLoader, random_split\n",
    "from torch.utils.tensorboard import SummaryWriter\n",
    "\n",
    "from tqdm import tqdm\n",
    "\n",
    "from sklearn.metrics import accuracy_score\n",
    "\n",
    "import numpy as np\n",
    "from scipy import stats\n",
    "import pandas as pd\n",
    "\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns; sns.set()\n",
    "\n",
    "import tensorflow as tf\n",
    "import tensorboard as tb\n",
    "tf.io.gfile = tb.compat.tensorflow_stub.io.gfile #FIX storing embeddings using tensorboard"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 202,
   "source": [
    "# produce a tarin of spikes and store timestamps of each spike in `spike_timestamps`.\n",
    "\n",
    "signal_rate = 2\n",
    "noise_rate = 1\n",
    "rate = signal_rate + noise_rate\n",
    "max_duration_in_sec = 10.\n",
    "resolution_in_sec = .1\n",
    "\n",
    "n_total_timesteps = int(max_duration_in_sec / resolution_in_sec)\n",
    "n_spikes = np.random.poisson(rate * max_duration_in_sec)\n",
    "\n",
    "# method 1: shuffle timesteps\n",
    "spike_timesteps = np.sort(np.random.choice(n_total_timesteps, size=n_spikes, replace=False))\n",
    "\n",
    "# method 2: exponential isi -> timestamps\n",
    "# isi = np.random.exponential(1 / rate, n_spikes)\n",
    "# spike_timestamps = np.cumsum(isi)\n",
    "\n",
    "# method 3: homogenous spikes -> timestamps\n",
    "# spike_timestamps = stats.uniform.rvs(loc=0, scale=max_duration_in_sec, size=n_spikes)"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Mock data"
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 203,
   "source": [
    "\n",
    "\n",
    "def generate_mock_data(n_subjects, n_trials, n_stimuli):\n",
    "  \"\"\"[summary]\n",
    "\n",
    "  # TODO required data columns: subject_index, trial_index, stimulus_index, accuracy, response_time\n",
    "\n",
    "  Args:\n",
    "      n_subjects (int): [description]\n",
    "      n_trials (int): [description]\n",
    "      n_stimuli (int): [description]\n",
    "\n",
    "  Returns:\n",
    "      (X, accuracies, response_times): A tuple containing generated mock X, accuracies, and response_times (in sec).\n",
    "  \"\"\"\n",
    "  # stimuli\n",
    "  X = np.random.randint(low=1, high=n_stimuli+1, size=(n_subjects, n_trials))\n",
    "\n",
    "  # response accuracy\n",
    "  subject_accuracies = np.random.uniform(low=0.2, high=1.0, size=n_subjects)\n",
    "  subject_accuracies = np.round(subject_accuracies * n_trials) / n_trials\n",
    "  accuracies = np.empty(shape=(n_subjects, n_trials))\n",
    "  for subj in range(n_subjects):\n",
    "    accuracies[subj,:] = np.random.choice(\n",
    "      [0,1],\n",
    "      p=[1-subject_accuracies[subj],subject_accuracies[subj]],\n",
    "      size=n_trials)\n",
    "\n",
    "  # generate output w.r.t the accuracy (and fill incorrect trials with invalid response)\n",
    "  y = np.where(accuracies == 1., X, X+1 % (n_stimuli+1))\n",
    "\n",
    "  # response time\n",
    "  response_times = np.random.exponential(.5, size=accuracies.shape)\n",
    "\n",
    "  return X, y, accuracies, response_times"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 204,
   "source": [
    "# mock data parameters\n",
    "n_subjects = 1\n",
    "n_trials = 20\n",
    "n_stimuli = 6\n",
    "\n",
    "X, y, accuracies, response_times = generate_mock_data(n_subjects, n_trials, n_stimuli)"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 210,
   "source": [
    "class PonderRNN(nn.Module):\n",
    "  def __init__(self, n_inputs, n_channels, n_outputs, halting_prob_prior=0.2):\n",
    "    super(PonderRNN, self).__init__()\n",
    "    self.encode = nn.Sequential(  # encode: x -> sent_msg\n",
    "      nn.Linear(n_inputs, n_channels, bias=False),\n",
    "    )\n",
    "    self.transmit = nn.Sequential(  # transmit: sent_msg -> rcvd_msg\n",
    "      nn.RNN(n_channels, n_channels),\n",
    "    )\n",
    "    self.decode = nn.Sequential(  # decode: rcvd_msg -> action\n",
    "      nn.Linear(n_channels,n_outputs, bias=False),\n",
    "      nn.Softmax(dim=2)\n",
    "    )\n",
    "\n",
    "    # \\lambda_p\n",
    "    self.halting_prob = halting_prob_prior\n",
    "\n",
    "  def forward(self, x):\n",
    "    # x: one stimulus category, output: y[1..N] + halting_prob[1..N]\n",
    "    # step 1: x -> x_n (repeat)\n",
    "    # step 2: x_n -> y_n\n",
    "\n",
    "    # VRC\n",
    "    msg = F.one_hot(x).type(torch.float)\n",
    "    msg = self.encode(msg)\n",
    "    msg, _ = self.transmit(msg)\n",
    "    msg = self.decode(msg)\n",
    "    y = msg.squeeze()\n",
    "\n",
    "    halting_n = torch.distributions.Geometric(self.halting_prob).sample().detach()\n",
    "    # self.halting_dist = torch.distributions.Geometric(prob)\n",
    "    # self.halting_probs = torch.cat(halting_prob, halting_prob)\n",
    "\n",
    "    return y, halting_n\n",
    "\n",
    "\n",
    "# split params\n",
    "train_size = int(n_trials * .8)\n",
    "test_size = n_trials - train_size\n",
    "\n",
    "# training parrms\n",
    "n_epoches = 1500\n",
    "\n",
    "logs = SummaryWriter()\n",
    "\n",
    "model = PonderRNN(n_stimuli+1, n_stimuli, n_stimuli+1)\n",
    "optimizer = torch.optim.Adam(model.parameters(), lr=0.001)\n",
    "criterion = torch.nn.CrossEntropyLoss()\n",
    "\n",
    "dataset = TensorDataset(torch.tensor(X), torch.tensor(y)-1)\n",
    "train_subset, test_subset = random_split(dataset, lengths=(train_size,test_size))\n",
    "\n",
    "X_test, y_test = dataset[test_subset.indices]\n",
    "\n",
    "print(X_test)\n",
    "\n",
    "xx\n",
    "\n",
    "for epoch in tqdm(range(n_epoches), desc='Epochs'):\n",
    "\n",
    "  for X_batch, y_batch in DataLoader(train_subset, batch_size=1):\n",
    "    model.train()\n",
    "    optimizer.zero_grad()\n",
    "    y_pred, _ = model(X_batch)\n",
    "\n",
    "  # logs.add_embedding(h.reshape(n_trials,n_stimuli), global_step=epoch, tag='embedding')\n",
    "\n",
    "  model_accuracy = accuracy_score(y_batch.squeeze(), torch.argmax(y_pred.detach(),dim=1))\n",
    "  logs.add_scalar('accurracy/train', model_accuracy, epoch)  \n",
    "\n",
    "  loss = criterion(y_pred, y_batch.squeeze())\n",
    "  logs.add_scalar('loss/train', loss, epoch)\n",
    "\n",
    "  loss.backward()\n",
    "  optimizer.step()\n",
    "\n",
    "  model.eval()\n",
    "  with torch.no_grad():\n",
    "    y_pred = model(X_test)\n",
    "    loss = criterion(y_test, y_pred)\n",
    "    logger.add_scalar('loss/test', loss.detach(), epoch)\n",
    "\n",
    "\n",
    "# tensorboard --logdir=runs"
   ],
   "outputs": [
    {
     "output_type": "error",
     "ename": "ValueError",
     "evalue": "Sum of input lengths does not equal the length of the input dataset!",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-210-d7a3afc60ba2>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     49\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     50\u001b[0m \u001b[0mdataset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mTensorDataset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 51\u001b[0;31m \u001b[0mtrain_subset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_subset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrandom_split\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlengths\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_size\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mtest_size\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     52\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     53\u001b[0m \u001b[0mX_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_test\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtest_subset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindices\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/miniconda3/envs/py3/lib/python3.9/site-packages/torch/utils/data/dataset.py\u001b[0m in \u001b[0;36mrandom_split\u001b[0;34m(dataset, lengths, generator)\u001b[0m\n\u001b[1;32m    349\u001b[0m     \u001b[0;31m# Cannot verify that dataset is Sized\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    350\u001b[0m     \u001b[0;32mif\u001b[0m \u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlengths\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m  \u001b[0;31m# type: ignore\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 351\u001b[0;31m         \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Sum of input lengths does not equal the length of the input dataset!\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    352\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    353\u001b[0m     \u001b[0mindices\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrandperm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlengths\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgenerator\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mgenerator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtolist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mValueError\u001b[0m: Sum of input lengths does not equal the length of the input dataset!"
     ]
    }
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 137,
   "source": [
    "model.eval()\n",
    "y_pred, _ = model(X_train)\n",
    "y_pred = np.argmax(y_pred.detach().numpy(), axis=1) + 1\n",
    "y_pred, y"
   ],
   "outputs": [
    {
     "output_type": "execute_result",
     "data": {
      "text/plain": [
       "(array([2, 6, 5, 2, 6, 4, 4, 7, 3, 7, 5, 3, 4, 3, 3, 6, 3, 5, 7, 2]),\n",
       " array([[2, 6, 5, 1, 6, 4, 4, 6, 3, 7, 5, 3, 4, 3, 3, 6, 3, 5, 7, 2]]))"
      ]
     },
     "metadata": {},
     "execution_count": 137
    }
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 199,
   "source": [
    "halting_prob = .1\n",
    "x = torch.distributions.Geometric(halting_prob).sample().item()\n",
    "type(x)\n",
    "# .2*.2*.2*.8"
   ],
   "outputs": [
    {
     "output_type": "execute_result",
     "data": {
      "text/plain": [
       "float"
      ]
     },
     "metadata": {},
     "execution_count": 199
    }
   ],
   "metadata": {}
  }
 ],
 "metadata": {
  "orig_nbformat": 4,
  "language_info": {
   "name": "python",
   "version": "3.9.4",
   "mimetype": "text/x-python",
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "pygments_lexer": "ipython3",
   "nbconvert_exporter": "python",
   "file_extension": ".py"
  },
  "kernelspec": {
   "name": "python3",
   "display_name": "Python 3.9.4 64-bit ('py3': conda)"
  },
  "interpreter": {
   "hash": "5ddcf14c786c671500c086f61f0b66d0417d6c58ff12753e346e191a84f72b84"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}