#%% [markdown] # Complex experiments in cognitive science require participants to perform multiple tasks and capture observations with different modalities. This notebook demonstrates some possible solutions for the problem of scheduling experimental tasks. # First, we model a study with 12 sessions. Sessions consist of several surveys before and after a set of experimental tasks. We then define constraints and solve for a schedule for the given scenario. This scenario only plans the experiment for a single subject. # Use the following command to install dependencies: `pip install pyschedule` #%% from pyschedule import Scenario, solvers, plotters, alt # experiment duration in minutes duration = 60 questionnaires = ["xcit-demographics", "aiss", "arces", "asrs", "avg2019", "bfi-2", "bisbas", "bis11", "cfq", "cfs", "dyslexia", "ehi-sf", "grit12", "i-panas-sf", "ipaq-sf", "maas", "mfs", "mw", "mwq", "ncs-6", "nfc", "psqi", "rei", "sci", "sqs", "upps-sf", "webexec", "who5", "whoqol","nasa-tlx", "xcit-postgame-debrief"] # the planning horizon has s = Scenario('Prolific500', horizon=duration) session = s.Resource('session', num=12) mmi = s.Task('mmi', length=3, delay_cost=1) mmi += alt(session) games = s.Task('games',length=45, delay_cost=1, is_group=True) games += alt(session) nasa_tlx = s.Task('nasa_tlx', length=1, delay_cost=1) nasa_tlx += alt(session) # add constraints on precedences s += mmi < games s += games < nasa_tlx # compute and print session schedules solvers.mip.solve(s) print(s.solution()) plotters.matplotlib.plot(s) #%% #%% [markdown] # Complex experiments in cognitive science require participants to perform multiple tasks and capture observations with different modalities. This notebook demonstrates some possible solutions for the problem of scheduling experimental tasks. # First, we model a study with 12 sessions. Sessions consist of several surveys before and after a set of experimental tasks. We then define constraints and solve for a schedule for the given scenario. This scenario only plans the experiment for a single subject. #%% # MPILX Scheduling from pyschedule import Scenario, solvers, plotters, alt # experiment duration for each subject in minutes study_duration = 12 * 24 * 60 # days * hours * minutes n_subjects = 2 task_durations = { 'pretest_presurvey': 30, 'pretest_DWI': 15, 'pretest_rsfMRI': 15, 'pretest_anatomical': 15, 'pretest_taskfMRI': 45, 'pretest_postsurvey': 30, 'pretest_presurvey': 30, 'training_presurvey': 30, 'training_': 10 * 24 * 60, #TODO expand to daily 'training_postsurvey': 30, 'posttest_DWI': 15, 'posttest_rsfMRI': 15, 'posttest_anatomical': 15, 'posttest_taskfMRI': 45, 'posttest_postsurvey': 30 } # the planning horizon has s = Scenario('MPILX50', horizon=study_duration) subject = s.Resource('subject', num=n_subjects) tasks = list() for t in task_durations.keys(): duration = task_durations[t] task = s.Task(t, length=duration, delay_cost=1) task += alt(subject) tasks.append(task) for i in range(len(tasks)-1): s += tasks[i] < tasks[i+1] # compute and print session schedules solvers.mip.solve(s) print(s.solution()) plotters.matplotlib.plot(s)