# %% import numpy as np from scipy.stats import norm import pandas as pd x = np.linspace(0, 10, 100) y = [] for i, (loc, sd) in enumerate([(5,.5),(7,1)]): cost = 2 if i == 0 else 1 y.append(norm.pdf(x,loc,sd) * cost) df = pd.DataFrame({'x': x}) df[['s0','s1']] = np.array(y).T df = df.melt(id_vars='x',value_name='pdf',var_name='stimulus') import matplotlib.pyplot as plt import seaborn as sns sns.lineplot(data=df,x='x',y='pdf',hue='stimulus') plt.vlines([5.978,5.667,5.830,2.69], ymin=0,ymax=1.6, colors=['r','g','b','y'], lw=1, linestyles='--')