#%% import tensorflow as tf from tensorflow import keras import numpy as np import matplotlib.pyplot as plt print(tf.__version__) fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] plt.figure() plt.imshow(train_images[10]) plt.colorbar() plt.grid(False) plt.show() # scale train_images = train_images / 255.0 test_images = test_images / 255.0 plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5, i+1) plt.xticks([]) plt.yticks([]) plt.imshow(train_images[i], cmap=plt.cm.Blues) plt.xlabel(class_names[train_labels[i]]) plt.show() #%%