library(tidyverse)
library(caret)
library(here)
library(inspectdf)
library(glmnet)
library(ROSE)
rm(seqs)
load(here("notebooks/data/nback_seqs.Rd"))
seqs <- seqs %>% drop_na(rt, correct, tl,sl)
f <- correct ~ n + t + s + v + l + vl + sl + tl + ul + ll
set.seed(654321)
train.indices <- createDataPartition(seqs[[toString(f[[2]])]], p = .8, list =FALSE)
seqs.train.balanced <- seqs[train.indices,]
seqs.train <- ROSE(f, data = seqs.train.balanced)$data
seqs.train.x <- model.matrix(f, seqs.train)[,-1]
seqs.train.y <- seqs.train[[toString(f[[2]])]]
seqs.test <- seqs[-train.indices,]
seqs.test.x <- model.matrix(f, seqs.test)[,-1]
seqs.test.observed_y <- seqs.test[[toString(f[[2]])]]
ctrl <- rfeControl(functions = lrFuncs,
method = "cv",
number = 10,
verbose = T)
rmProfile <- rfe(seqs.train.x, seqs.train.y,
preProcess = c("nzv"),
rfeControl = ctrl)
rmProfile