{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "xicorr.ipynb", "provenance": [], "collapsed_sections": [], "authorship_tag": "ABX9TyPUlsT6KuGfIwhEKgliVO+J", "include_colab_link": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "<a href=\"https://colab.research.google.com/github/morteza/notebooks/blob/master/xicorr.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" ] }, { "cell_type": "code", "source": [ "import numpy as np\n", "\n", "import seaborn as sns; sns.set()" ], "metadata": { "id": "-4vX69aFhGlb" }, "execution_count": 1, "outputs": [] }, { "cell_type": "code", "execution_count": 8, "metadata": { "id": "-1bLlqB6hDjQ" }, "outputs": [], "source": [ "\n", "def xicorr(X,Y):\n", " n = X.size\n", " xi = np.argsort(X,kind='quicksort')\n", " Y = Y[xi]\n", " _,b,c = np.unique(Y,return_counts=True,return_inverse=True)\n", " r = np.cumsum(c)[b]\n", " _,b,c = np.unique(-Y,return_counts=True,return_inverse=True)\n", " l = np.cumsum(c)[b]\n", " return 1 - n*np.abs(np.diff(r)).sum() / (2*(l*(n-l)).sum())\n", "\n", "\n", "def xicorr2(x: 'ArrayLike', y: 'ArrayLike') -> float:\n", " \"\"\"xi correlation coefficient (alternative implementation)\n", "\n", " Written by github/atarashansky, modified by github/escherba\n", " https://github.com/czbiohub/xicor/issues/17#issue-965635013\n", " \"\"\"\n", " x = np.asarray(x)\n", " y = np.asarray(y)\n", " n = x.size\n", " assert y.size == n, \"arrays must be of the same size\"\n", " y = y[np.argsort(x, kind='quicksort')]\n", " _, inverse, counts = np.unique(y, return_inverse=True, return_counts=True)\n", " right = np.cumsum(counts)[inverse]\n", " left = np.cumsum(np.flip(counts))[(counts.size - 1) - inverse]\n", " return 1. - 0.5 * float(np.abs(np.diff(right)).sum() / np.mean(left * (n - left)))\n", "\n", "from scipy.stats import rankdata\n", "\n", "def xicorr_orig(x: 'ArrayLike', y: 'ArrayLike') -> float:\n", " \"\"\"Original R implementation of Xi translated into Python\n", "\n", " R implementation:\n", " https://github.com/cran/XICOR/blob/master/R/calculateXI.R\n", " \"\"\"\n", " x = np.asarray(x)\n", " y = np.asarray(y)\n", " n = x.size\n", " assert y.size == n, \"arrays must be of the same size\"\n", " PI = rankdata(x, method=\"average\")\n", " fr = rankdata(y, method=\"average\")\n", " CU = np.mean((float(n + 1) - fr) * (fr - 1.))\n", " A1 = np.abs(np.diff(fr[np.argsort(PI, kind=\"quicksort\")])).sum()\n", " return 1. - 0.5 * float(A1 / CU)" ] }, { "cell_type": "code", "source": [ "x = np.random.rand(125) + 2\n", "y = x**2 + x + np.sqrt(x) + 12 + np.random.randn(125)\n", "\n", "from scipy.stats import pearsonr\n", "\n", "xicorr(x, y), xicorr2(x, y), xicorr_orig(x, y), pearsonr(x, y)[0]" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "_lUdB0FxhSGw", "outputId": "3cc8fd00-b880-48ba-82c5-6bd40e03f85c" }, "execution_count": 84, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "(0.5468509984639016,\n", " 0.5468509984639016,\n", " 0.5468509984639016,\n", " 0.8923135014900104)" ] }, "metadata": {}, "execution_count": 84 } ] } ] }