--- title: "PLS Training" output: html_notebook --- PLS: ```{r} #detach("package:MASS","plsdof") # to avoid conflict with dplyr::select library(tidyverse) library(pls) ## 1. load sample data #data <- read.csv("http://wiki.q-researchsoftware.com/images/d/db/Stacked_colas.csv") rm(NB) load("./data/CL2015.RData") data <- NB str(data) ## 2. clean data (remove brand and URLID) data <- data %>% mutate(n=ifelse(condition=='2-back', 2, 3)) %>% select(-condition, -stimulus, -block, -trial) # %>% # rename( # ev.participant=participant, # ev.n=n, # ev.block=block, # ev.stimulus_type=stimulus_type, # rv.choice=choice, # rv.rt=rt, # rv.correct=correct # ) ## 3. use cross validatation to find the optimal number of dimensions pls.model = plsr(rt ~ ., data = data, validation = "CV") ## 3.1. find the model with lowest cv error cv <- RMSEP(pls.model) best_dims <- which.min(cv$val[estimate = "adjCV", , ]) - 1 ## 4. rebuild the model pls.model <- plsr(rt ~ ., data = data, ncomp = best_dims) ## 5. Sort, and visualize top coefficients coefs <- coef(pls.model) barplot(sort(coefs[,1,1], decreasing = T)[1:4]) ```