import random
import scipy.stats
class SequenceGenerator:
"""nb_gm_003:
- pseudo-random sampling.
- specific number of matching trials.
- even distribution of stimuli.
"""
def __init__(
self,
choices,
n,
targets_ratio=0.33 # ratio of matched trials (targets) in all trials
):
self.trials, self.choices, self.n, self.targets_ratio = None, choices, n, targets_ratio
self.seq = []
# create norm distributions for cost functions
self.evendist_norm = None
self.targets_ratio_norm = scipy.stats.norm(targets_ratio, 0.2)
self.tlratio_norm = None
def reset(self, trials):
self.trials = trials
self.evendist_norm = scipy.stats.norm(0, trials/len(self.choices))
self.tlratio_norm = scipy.stats.norm(2.0, trials/2)
if self.seq:
self.seq.clear()
def generate(self, trials):
self.reset(trials)
while not self.seq or len(self.seq) < self.trials:
# self.seq += self.best_choice()
chunk_size = self.n + 1 if len(self.seq) + self.n + 1 <= self.trials else self.trials-len(self.seq)
self.seq += self.best_chunk(chunk_size)
return self.seq
def best_chunk(self, chunk_size) -> list:
from itertools import permutations
min_cost, best_chunk = None, None
chunks = list(permutations(self.choices, chunk_size))
random.shuffle(chunks)
for chunk in chunks:
cost = self.cost(self.seq + list(chunk))
if min_cost is None or cost < min_cost:
min_cost, best_chunk = cost, chunk
return list(best_chunk)
def best_choice(self) -> list:
best_choice, min_cost = None, None
random.shuffle(self.choices) # to avoid ordering effect
for choice in self.choices:
cost = self.cost(self.seq + [choice])
if min_cost is None or cost < min_cost:
min_cost, best_choice = cost, choice
return [best_choice]
def cost(self, seq):
# DEBUG print(self.matchratio_cost(seq), self.evendist_cost(seq))
return self.even_distribution_cost(seq) + self.targets_ratio_cost(seq)
def even_distribution_cost(self, seq):
even_ratio = self.trials / len(self.choices)
costs = {c: abs(seq.count(c) - even_ratio) for c in self.choices}
max_deviation_from_even_dist = max(list(costs.values()))
cost = 1.0 - self.evendist_norm.pdf(max_deviation_from_even_dist)
return cost
def targets_ratio_cost(self, seq):
targets, _ = self.count_targets_and_lures(seq, self.n)
return 1.0 - self.targets_ratio_norm.pdf(targets/len(seq))
@classmethod
def count_targets_and_lures(cls, seq, n):
mask = ''
for index in range(n, len(seq)):
if seq[index] == seq[index - n]:
mask += 'T'
elif seq[index] in seq[index - (n-1):index - (n+1)]:
mask += 'L'
else:
mask += 'D'
return mask.count('T'), mask.count('L')
def tlratio_cost(self, seq) -> float:
"""
Calculates the T:L ratio deviation from the norm in a block of trials.
:param seq: sequence of trials
:return: float number between 0 and 1 representing the tl_ratio cost
"""
targets, lures = self.count_targets_and_lures(seq, self.n)
tl = targets/lures if lures != 0 else targets
return 1.0 - self.tlratio_norm.pdf(tl)
if __name__ == '__main__':
import time
n = 2
gen = SequenceGenerator(['1','2','3','4','5','6'], n)
st = time.time()
s = gen.generate(24)
st = time.time() - st
print(f"{gen.count_targets_and_lures(s,n)}")
print(f"time = {st:0.2f}s")
st = time.time()
s = gen.generate(48)
st = time.time() - st
print(f"{gen.count_targets_and_lures(s,n)}")
print(f"time = {st:0.2f}s")
st = time.time()
s = gen.generate(72)
st = time.time() - st
print(f"{gen.count_targets_and_lures(s,n)}")
print(f"time = {st:0.2f}s")