import itertools as it import random class GAOptimizedRandomGenerator: """Generate even random sequences according to a predefined TL ration (Ralph, 2014)""" def __init__(self, choices, trials, tl=2.0, pool_size=100, n=3): """Initialize the genetic algorithm optimizer for n-back sequences. :param choices: :param trials: :param tl: :param pool_size: :param n: """ self.tl, self.trials, self.choices, self.pool_size, self.n = tl, trials, choices, pool_size, n self.pool = [] self.__init_pool(pool_size) def generate(self): """Generate a sequence of trials based on passed parameters. TL ratio and distribution are expected to be close to the desired ones but not exactly the same. :return: a sequence of items in "list" format. """ generation = 0 best_parent = self.__find_best_parents(1)[0] while self.cost(best_parent) > 0.1 and generation < 1000: generation += 1 if random.random() > 0.5: self.pool = list(map(lambda s: self.mutate(s), self.pool)) self.pool = self.crossover_all() best_parent = self.__find_best_parents(1)[0] print(best_parent, 'cost=%f' % self.cost(best_parent)) return best_parent def __append_chunk(self, prefix="", chunk_size=8): chunk_generation = 0 pool = [] def __init_pool(self, pool_size, chunk_size = 8) -> list: """ Initialize solution pool. :param pool_size: Num of initial random solutions :return: initial pool of """ print("Initializing the pool...") population = it.combinations_with_replacement(self.choices, chunk_size) sample = random.sample(list(population), pool_size) self.pool = list(map(lambda _: ''.join(_), sample)) return self.pool def __find_best_parents(self, pool: list, count=1) -> list: """ Find best available sequences from the current pool based on the cost function. :param count: Number of desired best sequences to be returned. Default is 1. :return: A list of most fit sequences. """ sorted_pool = sorted(pool, key=lambda _: self.cost(_)) return sorted_pool[:count] def distribution_cost(self, seq): """ Calculate fitness according to the similarity to the desired uniform distribution. :param seq: a string :return: """ costs = {c: 0.0 for c in self.choices} for c in list(seq): costs[c] += 1.0 if costs.__contains__(c) else 0.0 # TODO instead of normalizing all, only normalize the max value costs = {k: abs(1.0 - v*len(self.choices)/self.trials) for k, v in costs.items()} return max(list(costs.values())) def cost(self, seq): """ Calculate overall fitness (or cost) of a sequence. It's a cost function, so we try to minimize this cost. :param seq: :return: """ # add fitness for uniform distribution of all stimuli # TODO merge different cost functions with weights return abs(self.calculate_tl_ratio(seq, self.n) - self.tl) + self.__distribution_cost(seq) def crossover_all(self): """ Perform random crossover for all pairs. :return: new pool """ new_pool = [] for i in range(int(self.pool_size/2)): seq1 = self.pool[i*2] # change to weighted random seq2 = self.pool[i*2 + 1] # change to weighted random new_pool.extend(self.crossover(seq1, seq2)) return new_pool def crossover(self, seq1, seq2): """ Crossover two sequences. :param seq1: :param seq2: :return: """ pos = random.randint(0, self.trials) return [seq1[:pos] + seq2[pos:], seq2[:pos] + seq1[pos:]] def mutate(self, seq): if random.random() > 0.5: pos = random.randint(0, len(seq)-1) seq_list = list(seq) seq_list[pos] = random.choice(self.choices) return ''.join(seq_list) return seq @staticmethod def calculate_tl_ratio(seq, n: int): """Calculates the T/L ratio in a block of trials.""" targets = 0.0 lures = 0.0 for index in range(n, len(seq)): item = seq[index] if item == seq[index - n]: targets += 1.0 elif item == seq[index - (n-1)] or item == seq[index - (n+1)]: lures += 1.0 if lures - 0.0 < 0.001: # avoid division by zero lures = 0.001 return targets/lures # Demo if __name__ == '__main__': generator = GAOptimizedRandomGenerator(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'], trials=16, n=2) sq = generator.generate() tl_ratio = generator.calculate_tl_ratio(sq, n=2) even_dist = generator.distribution_cost(sq) print('GA-Optimized Sequence: %s' % sq, 'with tl_ratio=%f' % tl_ratio, 'and even_dist_cost=%f' % even_dist)