import random import scipy.stats class SequenceGenerator: """Generate a sequence progressively according to a predefined TL ratio and an even distribution""" def __init__(self, choices, trials, tl=4.0, n=3, targets_ratio=0.2): """Initialize the genetic algorithm optimizer for n-back sequences. :param choices: :param trials: :param tl: :param n: """ self.tl, self.trials, self.choices, self.n, self.targets_ratio = tl, trials, choices, n, targets_ratio self.sequence = list() self.norm_even_dist = scipy.stats.norm(0, trials/2) self.norm_targets_ratio_dist = scipy.stats.norm(targets_ratio, 0.5) self.norm_tl_ratio_dist = scipy.stats.norm(tl, trials/2) def generate(self): while not self.sequence or len(self.sequence) < self.trials: self.sequence = self.__find_best_next_sequence(self.sequence, self.choices) return self.sequence def next_trial(self): if self.sequence and len(self.sequence) >= self.trials: return None self.sequence = self.__find_best_next_sequence(self.sequence, self.choices) return self.sequence[-1] def __find_best_next_sequence(self, seq: list, choices: list) -> list: import sys min_cost = sys.float_info.max best_seq = seq random.shuffle(choices) # to avoid ordering effect for choice in choices: tmp_seq = seq + list(choice) cost = self.cost(tmp_seq) if cost < min_cost: min_cost = cost best_seq = tmp_seq return best_seq def calc_even_distribution_distance(self, seq): """ Calculate fitness according to the similarity to the desired uniform distribution. :param seq: a string :return: """ costs = {c: 0.0 for c in self.choices} for c in list(seq): costs[c] += (1.0 if costs.__contains__(c) else 0.0) even_ratio = self.trials / len(self.choices) costs = {k: abs(v - even_ratio)/self.trials for k,v in costs.items()} return max(list(costs.values())) def cost(self, seq): """ Calculate overall fitness of a sequence (block of trials). Right now it's a cost function, so we try to minimize this cost. :param seq: :return: """ targets, lures = self.count_targets_and_lures(seq, self.n) targets_ratio_cost = 1.0 - self.norm_targets_ratio_dist.pdf(targets/self.trials) tl_ratio_cost = 1.0 - self.norm_tl_ratio_dist.pdf(self.calc_tl_ratio(seq, self.n)) even_dist_cost = 1.0 - self.norm_even_dist.pdf(self.calc_even_distribution_distance(seq)) # print(targets_ratio_cost, tl_ratio_cost, even_dist_cost) return targets_ratio_cost + tl_ratio_cost + even_dist_cost @staticmethod def count_targets_and_lures(seq, n: int): targets = 0.0 lures = 0.0 for index in range(n, len(seq)): if seq[index] == seq[index - n]: targets += 1.0 elif seq[index] == seq[index - (n-1)] or seq[index] == seq[index - (n+1)]: lures += 1.0 return targets, lures def calc_tl_ratio(self, seq, n: int): """Calculates the T/L ratio in a block of trials.""" targets, lures = self.count_targets_and_lures(seq, n) if lures < 0.01: # avoid division by zero lures = 0.01 return targets/lures if __name__ == '__main__': n = 3 generator = SequenceGenerator(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'], trials=128, n=n) sq = generator.generate() tl_ratio = generator.calc_tl_ratio(sq, n=n) even_dist_distance = generator.calc_even_distribution_distance(sq) print('Progressively-Optimized Sequence: targets=%d, lures=%d' % generator.count_targets_and_lures(sq, n=n), 'with tl_ratio=%f' % tl_ratio, 'and even_dist_cost=%f' % even_dist_distance)