import itertools as it
import random
class ProgressiveGAGenerator:
"""Generate a sequence progressively according to a predefined TL ratio and an even distribution"""
def __init__(self, choices, trials, tl=2.0, pool_size=100, n=3):
"""Initialize the genetic algorithm optimizer for n-back sequences.
:param choices:
:param trials:
:param tl:
:param pool_size:
:param n:
"""
self.tl, self.trials, self.choices, self.pool_size, self.n = tl, trials, choices, pool_size, n
self.pool = []
self.__init_pool(pool_size)
def generate(self):
"""Generate a sequence of trials based on passed parameters. TL ratio and distribution are expected to be
close to the desired ones but not exactly the same.
:return: a sequence of items in "list" format.
"""
generation = 0
best_parent = self.__find_best_parents(1)[0]
while self.cost(best_parent) > 0.1 and generation < 1000:
generation += 1
if random.random() > 0.5:
self.pool = list(map(lambda s: self.mutate(s), self.pool))
self.pool = self.crossover_all()
best_parent = self.__find_best_parents(1)[0]
print(best_parent, 'cost=%f' % self.cost(best_parent))
return best_parent
def __init_pool(self, pool_size) -> list:
"""
Initialize solution pool.
:param pool_size: Num of initial random solutions
:return: initial pool of
"""
print("Initializing the pool...")
self.pool.clear()
all_comb = it.combinations_with_replacement(self.choices, self.trials)
sample = random.sample(list(all_comb), pool_size)
self.pool.extend(map(lambda _: ''.join(_), sample))
return self.pool
def __find_best_parents(self, count=1):
"""
Find best gene(s) or parent(s) from the current pool.
:param count: Number of desired best parents to be returned. Default is 1.
:return: A list of most fit sequences.
"""
sorted_pool = sorted(self.pool, key=lambda ss: self.cost(ss))
return sorted_pool[:count]
def even_dist_cost(self, seq):
"""
Calculate fitness according to the similarity to the desired uniform distribution.
:param seq: a string
:return:
"""
costs = {c: 0.0 for c in self.choices}
for c in list(seq):
costs[c] += (1.0 if costs.__contains__(c) else 0.0)
costs = {k: abs(1.0 - v*len(self.choices)/self.trials) for k,v in costs.items()}
return max(list(costs.values()))
def cost(self, seq):
"""
Calculate overall fitness of a sequence (block of trials).
Right now it's a cost function, so we try to minimize this cost.
:param seq:
:return:
"""
# add fitness for uniform distribution of all stimuli
return abs(self.calculate_tl_ratio(seq, self.n) - self.tl) + self.even_dist_cost(seq)
def crossover_all(self):
"""
Perform random crossover for all pairs.
:return: new pool
"""
new_pool = []
for i in range(int(self.pool_size/2)):
seq1 = self.pool[i*2] # change to weighted random
seq2 = self.pool[i*2 + 1] # change to weighted random
new_pool.extend(self.crossover(seq1, seq2))
return new_pool
def crossover(self, seq1, seq2):
"""
Crossover two sequences.
:param seq1:
:param seq2:
:return:
"""
pos = random.randint(0, self.trials)
return [seq1[:pos] + seq2[pos:], seq2[:pos] + seq1[pos:]]
def mutate(self, seq):
if random.random() > 0.5:
pos = random.randint(0, len(seq)-1)
seq_list = list(seq)
seq_list[pos] = random.choice(self.choices)
return ''.join(seq_list)
return seq
@staticmethod
def calculate_tl_ratio(seq, n: int):
"""Calculates the T/L ratio in a block of trials."""
targets = 0.0
lures = 0.0
for index in range(n, len(seq)):
item = seq[index]
if item == seq[index - n]:
targets += 1.0
elif item == seq[index - (n-1)] or item == seq[index - (n+1)]:
lures += 1.0
if lures - 0.0 < 0.001: # avoid division by zero
lures = 0.001
return targets/lures
if __name__ == '__main__':
generator = ProgressiveGAGenerator(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'], trials=16, n=2)
sq = generator.generate()
tl_ratio = generator.calculate_tl_ratio(sq, n=2)
even_dist = generator.even_dist_cost(sq)
print('Progressively-Optimized Sequence: %s' % sq, 'with tl_ratio=%f' % tl_ratio, 'and even_dist_cost=%f' % even_dist)