import itertools as it import random class GAOptimizedRandomGenerator: """Generate even random sequences according to a predefined TL ration (Ralph, 2014)""" def __init__(self, choices, trials=64, tl=1, pool_size=100, n=2): """ Initialize the genetic algorithm optimizer for n-back sequences. :param choices: :param trials: :param tl: :param pool_size: :param n: """ self.tl, self.trials, self.choices, self.pool_size, self.n = tl, trials, choices, pool_size, n self.pool = [] self.__init_pool(pool_size) def generate(self): """ Generate a sequence of trials based on passed parameters. TL ratio and distribution are expected to be close to the desired ones but not exactly the same. :return: a sequence of items in "list" format. """ generation = 0 best_parent = self.__find_best_parents(1)[0] while self.fitness(best_parent) > 0.1 and generation < 100000: generation += 1 self.pool = self.mutate() self.pool = self.crossover_all() best_parent = self.__find_best_parents(1)[0] print(best_parent, ' ', self.calculate_tl_ratio(best_parent, self.n)) return best_parent def __init_pool(self, pool_size): """ :param pool_size: DNA size or number of parents in the GA pool. :return: A DNA or pool in list format. """ self.pool.clear() all_comb = it.combinations_with_replacement(self.choices, self.trials) sample = random.sample(list(all_comb), pool_size) self.pool.extend(map(lambda sampi: ''.join(sampi), sample)) return self.pool def __find_best_parents(self, count=1): """ Find best gene(s) or parent(s) from the current pool. :param count: Number of desired best parents to be returned. Default is 1. :return: A list of most fit sequences. """ sorted_pool = sorted(self.pool, key=lambda ss: self.fitness(ss)) return sorted_pool[:count] def __dist_fitness(self, seq, trials): """ Calculate fitness according to the similarity to the desired uniform distribution. :param seq: :param trials: :return: """ pass def fitness(self, seq): """ Calculate overall fitness of a sequence (block of trials). It's cost, so we try to minimize this cost. :param seq: :return: """ # add fitness for uniform distribution of all stimuli return abs(self.calculate_tl_ratio(seq, self.n) - self.tl) def crossover_all(self): """ Do random crossover for all pairs. :return: """ new_pool = [] for i in range(int(self.pool_size/2)): seq1 = self.pool[i*2] # change to weighted random seq2 = self.pool[i*2 + 1] # change to weighted random new_pool.extend(self.crossover(seq1, seq2)) return new_pool def crossover(self, seq1, seq2): """ Crossover two sequences. :param seq1: :param seq2: :return: """ pos = random.randint(0, self.trials) return [seq1[:pos] + seq2[pos:], seq2[:pos] + seq1[pos:]] def mutate(self): # pass return self.pool @staticmethod def calculate_tl_ratio(seq, N): """Calculates the T/L ratio in a block of trials.""" targets = 0.0 lures = 0.0 for index in range(N, len(seq)): item = seq[index] if item == seq[index - N]: targets += 1.0 elif item == seq[index - (N-1)] or item == seq[index - (N+1)]: lures += 1.0 if lures - 0.0 < 0.001: # avoid division by zero lures = 0.001 return targets/lures if __name__ == '__main__': generator = GAOptimizedRandomGenerator(['a', 'b', 'c', 'd', 'e', 'f'], trials=32) s = generator.generate() tl_ratio = generator.calculate_tl_ratio(s, 2) print('GA-Optimized Sequence: %s' % s, 'with tl_ratio=%f' % tl_ratio)