import generators.nb_gm_001 as nb_gm_001 import random import heapq import csv def __test_generate_stat_csv(filename): alphabetic_choices = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'] min_trials, max_trials = 24, 100 n = 2 with open(filename, mode='w') as stat_dist_file: writer = csv.writer(stat_dist_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) writer.writerow(['index'] + alphabetic_choices + ['ralph_skewed']) for i in range(10000): trials = random.randint(min_trials, max_trials) generator = nb_gm_001.SequenceGenerator(alphabetic_choices, n=n, trials=trials) seq = generator.generate() dist = [float(seq.count(c)) for c in alphabetic_choices] ralph_skewed = sum(heapq.nlargest(int(len(alphabetic_choices)/2), dist)) > (trials*2/3) writer.writerow([str(i)] + dist + [str(ralph_skewed)]) __show_skweness_diagram(filename, alphabetic_choices) def __show_skweness_diagram(filename, choices): import pandas as pd from matplotlib import pyplot as plt print(filename) data = pd.read_csv(filename) data['trials'] = data[choices].sum(axis=1) max_trials = data['trials'].max() min_trials = data['trials'].min() stats = [] for t in range(int(min_trials), int(max_trials) + 1): dt = data[data.trials == t].trials.count() st = data[(data.trials == t) & (data['ralph_skewed']==True)].trials.count() * 100 / data.trials.sum() stats.append([t, dt, st]) stats = pd.DataFrame(stats, columns=['trials', 'num_of_sequences','num_of_skewed_sequences']) plt.scatter(stats.trials,stats.num_of_skewed_sequences) plt.show() if __name__ == '__main__': __test_generate_stat_csv('../benchmarks/nb_gm_001_2back_24trials.csv')