diff --git a/ccn2019.rev3.Rmd b/ccn2019.rev3.Rmd index 306ff8c..d286a1c 100644 --- a/ccn2019.rev3.Rmd +++ b/ccn2019.rev3.Rmd @@ -12,6 +12,7 @@ library(broom) library(rsample) library(inspectdf) +library(caTools) ``` @@ -30,12 +31,6 @@ }) } - -invs <- function(s) { - print(length(s)!=8) - 1 -} - seqs <- NB %>% group_by(participant, block, condition) %>% mutate(n = ifelse(condition=='2-back',2,3)) %>% @@ -84,8 +79,9 @@ number = 5 ) +#==================================================# # Train PLS model (accuracy) -model_pls_rt <- train( +model_pls_accuracy <- train( a ~ .-rt-al-correct, data = train_data, method = "pls", @@ -94,8 +90,13 @@ preProc = c("zv","center","scale")) # Check CV profile -plot(model_pls_rt) +plot(model_pls_accuracy) +# PLS variable importance +varImp(model_pls_accuracy) + + +#==================================================# # Train PLS model (rt) train_data_x <- data %>% select(-rt,-a,-correct) train_data_y <- (data %>% select(rt))$rt @@ -111,7 +112,17 @@ # Check CV profile plot(model_pls_rt) +# PLS variable importance +varImp(model_pls_rt) + +predicted_rt_data <- predict(model_pls_rt, test_data) + +confusionMatrix(predicted_rt_data,test_data$rt) + +colAUC(predicted_rt_data,test_data$rt, plotROC=T) + +#==================================================# # training control params for "correct" column trControl <- trainControl( method = "cv", @@ -134,10 +145,9 @@ confusionMatrix(test_data$correct, predicted_correct_data) -library(caTools) colAUC(predicted_correct_data, test_data$correct, plotROC=T) - +#==================================================# ## OLD MODEL (only global features) model_glm_correct_old <- train( correct ~ n+t+v, @@ -153,6 +163,5 @@ confusionMatrix(test_data$correct, predicted_old_correct_data) -library(caTools) colAUC(predicted_old_correct_data,test_data$correct, plotROC=T) ```