diff --git a/ccn2019.rev3.Rmd b/ccn2019.rev3.Rmd index 1125fa1..f44f094 100644 --- a/ccn2019.rev3.Rmd +++ b/ccn2019.rev3.Rmd @@ -47,12 +47,12 @@ group_by(participant, block, condition) %>% mutate(n = ifelse(condition=='2-back',2,3)) %>% mutate(stimulus_type = with_lures(stimulus, stimulus_type, n)) %>% - mutate(tl = slide2_dbl(stimulus_type, rt, ~length(which(.x=='target'))/length(which(!is.na(.y))), .partial=T,.size=window_size), - ll = slide2_dbl(stimulus_type, rt, ~length(which(.x=='lure'))/length(which(!is.na(.y))), .partial=T, .size=window_size), - sl = slide_dbl(stimulus_type, ~sum(sort(table(.x), decreasing = T)[1:2]) - 1, .partial=T, .size=window_size), - ul = slide_dbl(stimulus, ~max(table(.))-1, .partial=T, .size=window_size), - vl = slide_dbl(stimulus, ~length(unique(.)), .partial=T, .size=window_size), - al = slide2_dbl(correct, rt, ~length(which(.x))/length(which(!is.na(.y))), .partial=T, .size=window_size), + mutate(tl = slide2_dbl(stimulus_type, rt, ~length(which(lag(.x)=='target'))/length(which(!is.na(lag(.y)))), .partial=T,.size=window_size), + ll = slide2_dbl(stimulus_type, rt, ~length(which(lag(.x)=='lure'))/length(which(!is.na(lag(.y)))), .partial=T, .size=window_size), + sl = slide_dbl(stimulus_type, ~sum(sort(table(lag(.x)), decreasing = T)[1:2]) - 1, .partial=T, .size=window_size), + ul = slide_dbl(stimulus, ~max(table(lag(.)))-1, .partial=T, .size=window_size), + vl = slide_dbl(stimulus, ~length(unique(lag(.))), .partial=T, .size=window_size), + al = slide2_dbl(correct, rt, ~length(which(lag(.x)))/length(which(!is.na(lag(.y)))), .partial=T, .size=window_size), sl = ifelse(is.na(sl), 0, sl), tl = ifelse(is.na(tl), NA, tl), ll = ifelse(is.na(ll), NA, ll), diff --git a/ccn2019.rev3.Rmd b/ccn2019.rev3.Rmd index 1125fa1..f44f094 100644 --- a/ccn2019.rev3.Rmd +++ b/ccn2019.rev3.Rmd @@ -47,12 +47,12 @@ group_by(participant, block, condition) %>% mutate(n = ifelse(condition=='2-back',2,3)) %>% mutate(stimulus_type = with_lures(stimulus, stimulus_type, n)) %>% - mutate(tl = slide2_dbl(stimulus_type, rt, ~length(which(.x=='target'))/length(which(!is.na(.y))), .partial=T,.size=window_size), - ll = slide2_dbl(stimulus_type, rt, ~length(which(.x=='lure'))/length(which(!is.na(.y))), .partial=T, .size=window_size), - sl = slide_dbl(stimulus_type, ~sum(sort(table(.x), decreasing = T)[1:2]) - 1, .partial=T, .size=window_size), - ul = slide_dbl(stimulus, ~max(table(.))-1, .partial=T, .size=window_size), - vl = slide_dbl(stimulus, ~length(unique(.)), .partial=T, .size=window_size), - al = slide2_dbl(correct, rt, ~length(which(.x))/length(which(!is.na(.y))), .partial=T, .size=window_size), + mutate(tl = slide2_dbl(stimulus_type, rt, ~length(which(lag(.x)=='target'))/length(which(!is.na(lag(.y)))), .partial=T,.size=window_size), + ll = slide2_dbl(stimulus_type, rt, ~length(which(lag(.x)=='lure'))/length(which(!is.na(lag(.y)))), .partial=T, .size=window_size), + sl = slide_dbl(stimulus_type, ~sum(sort(table(lag(.x)), decreasing = T)[1:2]) - 1, .partial=T, .size=window_size), + ul = slide_dbl(stimulus, ~max(table(lag(.)))-1, .partial=T, .size=window_size), + vl = slide_dbl(stimulus, ~length(unique(lag(.))), .partial=T, .size=window_size), + al = slide2_dbl(correct, rt, ~length(which(lag(.x)))/length(which(!is.na(lag(.y)))), .partial=T, .size=window_size), sl = ifelse(is.na(sl), 0, sl), tl = ifelse(is.na(tl), NA, tl), ll = ifelse(is.na(ll), NA, ll), diff --git a/data/nback_seqs.Rd b/data/nback_seqs.Rd index d2911cc..a1112bb 100644 --- a/data/nback_seqs.Rd +++ b/data/nback_seqs.Rd Binary files differ diff --git a/ccn2019.rev3.Rmd b/ccn2019.rev3.Rmd index 1125fa1..f44f094 100644 --- a/ccn2019.rev3.Rmd +++ b/ccn2019.rev3.Rmd @@ -47,12 +47,12 @@ group_by(participant, block, condition) %>% mutate(n = ifelse(condition=='2-back',2,3)) %>% mutate(stimulus_type = with_lures(stimulus, stimulus_type, n)) %>% - mutate(tl = slide2_dbl(stimulus_type, rt, ~length(which(.x=='target'))/length(which(!is.na(.y))), .partial=T,.size=window_size), - ll = slide2_dbl(stimulus_type, rt, ~length(which(.x=='lure'))/length(which(!is.na(.y))), .partial=T, .size=window_size), - sl = slide_dbl(stimulus_type, ~sum(sort(table(.x), decreasing = T)[1:2]) - 1, .partial=T, .size=window_size), - ul = slide_dbl(stimulus, ~max(table(.))-1, .partial=T, .size=window_size), - vl = slide_dbl(stimulus, ~length(unique(.)), .partial=T, .size=window_size), - al = slide2_dbl(correct, rt, ~length(which(.x))/length(which(!is.na(.y))), .partial=T, .size=window_size), + mutate(tl = slide2_dbl(stimulus_type, rt, ~length(which(lag(.x)=='target'))/length(which(!is.na(lag(.y)))), .partial=T,.size=window_size), + ll = slide2_dbl(stimulus_type, rt, ~length(which(lag(.x)=='lure'))/length(which(!is.na(lag(.y)))), .partial=T, .size=window_size), + sl = slide_dbl(stimulus_type, ~sum(sort(table(lag(.x)), decreasing = T)[1:2]) - 1, .partial=T, .size=window_size), + ul = slide_dbl(stimulus, ~max(table(lag(.)))-1, .partial=T, .size=window_size), + vl = slide_dbl(stimulus, ~length(unique(lag(.))), .partial=T, .size=window_size), + al = slide2_dbl(correct, rt, ~length(which(lag(.x)))/length(which(!is.na(lag(.y)))), .partial=T, .size=window_size), sl = ifelse(is.na(sl), 0, sl), tl = ifelse(is.na(tl), NA, tl), ll = ifelse(is.na(ll), NA, ll), diff --git a/data/nback_seqs.Rd b/data/nback_seqs.Rd index d2911cc..a1112bb 100644 --- a/data/nback_seqs.Rd +++ b/data/nback_seqs.Rd Binary files differ diff --git a/dummy-vars-playground.R b/dummy-vars-playground.R index 5a696db..715083b 100644 --- a/dummy-vars-playground.R +++ b/dummy-vars-playground.R @@ -8,7 +8,10 @@ rm(seqs) load(here("notebooks/data/nback_seqs.Rd")) -f <- as.formula("correct ~ stimulus + stimulus_type + n") +seqs <- seqs %>% + mutate(stimulus = lag(stimulus)) + +f <- as.formula("correct ~ stimulus + n") set.seed(42) @@ -23,21 +26,20 @@ mutate(stimulus_type = factor(stimulus_type)) -table(seqs$stimulus) +# -train.indices <- createDataPartition(seqs$correct, p = .8, list =FALSE) - +train.indices <- createDataPartition(seqs[[toString(f[[2]])]], p = .8, list =FALSE) seqs.train.balanced <- seqs[train.indices,] seqs.train <- seqs.train.balanced -# seqs.train <- ROSE(correct ~ ., data = seqs.train.balanced)$data +# seqs.train <- ROSE(f, data = seqs.train.balanced)$data seqs.train.x <- model.matrix(f, seqs.train)[,-1] -seqs.train.y <- seqs.train$correct +seqs.train.y <- seqs.train[[toString(f[[2]])]] seqs.test <- seqs[-train.indices,] seqs.test.x <- model.matrix(f, seqs.test)[,-1] -seqs.test.observed_y <- seqs.test$correct +seqs.test.observed_y <- seqs.test[[toString(f[[2]])]] # model <- cv.glmnet(seqs.train.x, # seqs.train.y, @@ -59,7 +61,7 @@ tune <- expand.grid(alpha = 0:1, lambda = seq(0, 0.01, length = 100)) # pls tune -tune <- expand.grid(ncomp=1:6) +tune <- expand.grid(ncomp=1:5) model <- train(seqs.train.x, seqs.train.y, @@ -92,7 +94,6 @@ print.auc.x = 55, lty = 1, of = "se", - boot.n = 100, ci = T)