{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33mWARNING: Skipping top2vec as it is not installed.\u001b[0m\n",
"\u001b[33mWARNING: Skipping bertopic as it is not installed.\u001b[0m\n"
]
}
],
"source": [
"!pip install \"umap-learn[parametric_umap]\" -Uq"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"from umap.parametric_umap import ParametricUMAP\n",
"import numpy as np\n",
"\n",
"\n",
"ParametricUMAP().fit_transform(np.random.random((300000,384)))"
]
}
],
"metadata": {
"interpreter": {
"hash": "266722041ed6426a0a88c0d75e9dd39659f44e3a6fea07300cd13bea36eb387d"
},
"kernelspec": {
"display_name": "Python 3.9.7 64-bit ('py3': conda)",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}