# %% # !pip install pyreadr tensorflow -U import pyreadr import pandas as pd import numpy as np dataset_file = 'data/CL2015.RData' # read n-back dataset datasets = pyreadr.read_r(dataset_file, use_objects="NB") dataset = datasets["NB"] X = dataset.stimulus.cat.codes.values X = np.reshape(X, (X.shape[0], 1, 1)) y = pd.get_dummies(dataset.correct).values y = np.reshape(y, (y.shape[0], 1, y.shape[1])) # %% from tensorflow import keras from tensorflow.keras import layers model = keras.Sequential() model.add(layers.SimpleRNN(units=32, input_dim=1, activation="relu")) model.add(layers.Dense(8, activation="relu")) model.add(layers.Dense(1)) model.compile(loss='mean_squared_error', optimizer='rmsprop') print(model.summary()) model.fit(X, y, batch_size=32) # model.add(layers.Embedding(input_dim=28, output_dim=64)) # model.add(layers.LSTM(128)) # model.add(layers.Dense(10)) # model.summary() # stimulus -> correct # %% model.summary()