Newer
Older
notebooks / py / .ipynb_checkpoints / pandas-checkpoint.ipynb
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": true,
    "pycharm": {
     "is_executing": false,
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "\n",
    "np.random.seed(123)\n",
    "coins = []\n",
    "coins_random_walk = [0]\n",
    "for i in range(10):\n",
    "    if np.random.randint(0,2) == 0:\n",
    "        coins_random_walk.append(0)\n",
    "        coins.append(\"head\")\n",
    "    else:\n",
    "        coins.append(\"tail\")\n",
    "print(coins)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "A = [1,2,3]\n",
    "B = A + [4,5]\n",
    "B.append(6)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "is_executing": false,
     "name": "#%% \n"
    }
   },
   "outputs": [],
   "source": [
    "# matplotlib\n",
    "import matplotlib.pyplot as plt\n",
    "plt.scatter([1,2,3], [7,8,9], s=[3,60,90], c=['red','blue','green'], alpha=0.5)\n",
    "\n",
    "plt.text(10, 8.5, \"Here is some\")\n",
    "\n",
    "plt.grid(True)\n",
    "\n",
    "plt.xscale('log') \n",
    "plt.xlabel(\"X Label\")\n",
    "plt.ylabel(\"Y Label\")\n",
    "plt.title(\"Title\")\n",
    "plt.xticks([10,20,30], [\"10x\", \"20x\",\"30x\"])\n",
    "plt.show()"
   ]
  }
 ],
 "metadata": {
  "authors": [],
  "description": "",
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  },
  "nteract": {
   "version": "nteract-on-jupyter@2.1.3"
  },
  "pycharm": {
   "stem_cell": {
    "cell_type": "raw",
    "metadata": {
     "collapsed": false
    },
    "source": [
     "Simulate \n"
    ]
   }
  },
  "tags": [],
  "title": "Pandas Playground"
 },
 "nbformat": 4,
 "nbformat_minor": 0
}