--- title: "Evaluating N-Back Sequences" --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = FALSE) library(tidyverse) library(ggplot2) library(stringi) library(GA) library(dbscan) library(inspectdf) load('./data/CL2015.RData') ``` ### Variables - $T$ number of targets - $L$ number of lures - $S$ Skewness score - $U$ Uniformity (!repetition) - $RT_{mean}$ - $Accuracy_{mean}$ - $dprime$ - $criterion$ ## Constraints - fixed number of targets - fixed number of lures (a.k.a, foils) - uniform distribution of choices - controlled local lumpiness Each constraint is an up side down quadratic function to be minimized. ```{r, eval=F} targets_cost <- function(x) 1.0 - 10*dnorm(x,mean=0,sd=4) lures_cost <- function(x) 1.0 - 10*dnorm(x,mean=0,sd=4) skewness_cost <- function(x, choices) { uniform_ratio <- length(x) / length(choices) deviation_from_uniform <- setNames(vector('numeric', length(choices)), choices) for (c in choices) { deviation_from_uniform[c] = abs(length(x[x==c]) - uniform_ratio) } #TODO convert to gaussian loss max(deviation_from_uniform) } lumpiness_cost <- function(x, choices) { #trials = len(seq) #freqs = [float(seq.count(c)) for c in choices] #ralph_skewed = sum(heapq.nlargest(int(len(choices) / 2), freqs)) > (trials * 2 / 3) #return ralph_skewed NA } #merged_cost <- function(x) targets_fitness(x) + lures_fitness(x) + skewness_fitness(x) #GA <- ga(type = "real-valued", fitness = merged_cost, lower = -10, upper = 10) #plot(GA) ``` ```{r} with_lures <- function(condition, stim, stim_type, history = NA) { sapply(1:length(stim), function(i) { switch(as.character(condition[i]), "2-back" = { ifelse( stim[i]==stri_sub(history[i],-2,-2) || stim[i]==stri_sub(history[i],-4,-4), 'lure', as.character(stim_type[i]) )}, "3-back" = { ifelse( stim[i]==stri_sub(history[i],-3,-3) || stim[i]==stri_sub(history[i],-5,-5), 'lure', as.character(stim_type[i]) )} ) }) } with_targets_ratio <- function(stimulus_type, history) { sapply(1:length(history), function(i) { trials <- stimulus_type[(i-stri_length(history[i])):i] trials <- unlist(trials, use.names=FALSE) length(trials[trials=="target"]) }) } with_lures_ratio <- function(stimulus_type, history) { sapply(1:length(history), function(i) { trials <- stimulus_type[(i-str_length(history[i])):i] trials <- unlist(trials, use.names=FALSE) length(trials[trials=="lure"]) }) } with_lumpiness_score <- function(stimulus, history) { sapply(1:length(history), function(i) { trials <- stimulus[(i-str_length(history[i])):i] trials <- unlist(trials, use.names=FALSE) max(table(trials)) - 1 }) } with_lag <- function(stimulus, history) { # find last occurance the of stimulus } with_skewness_score <- function(stimulus, history) { sapply(1:length(history), function(i) { trials <- stimulus[(i-str_length(history[i])):i] trials <- unlist(trials, use.names=FALSE) sum(sort(table(trials), decreasing = T)[1:2]) - 1 }) } with_history <- function(stims, size=16) { res <- c('') for (i in 2:length(stims)) { res[i] <- stri_sub(paste(res[i-1], stims[i], sep=''),from=-size,length=size) } #res <- ifelse(stri_length(res)==size, res, NA) res } normalize_scores <- function(targets_ratio, lures_ratio, skewness, lumpiness) { #TODO sapply(1:length(targets_ratio), function(i) 0) } window_size <- 8 NB_modified <- NB %>% group_by(participant, condition, block) %>% mutate(history = with_history(stimulus, size=window_size)) %>% #mutate(stimulus_type = map_chr(.x=stimulus, stim_type=stimulus_type, history=history,.f=with_lures)) mutate(stimulus_type_2 = with_lures(condition, stimulus, stimulus_type, history)) %>% mutate(targets = with_targets_ratio(stimulus_type_2, history)) %>% mutate(lures = with_lures_ratio(stimulus_type_2, history)) %>% mutate(skewness = with_skewness_score(stimulus, history)) %>% mutate(lumpiness = with_lumpiness_score(stimulus, history)) %>% filter(stri_length(history)==window_size) %>% mutate(correct = ifelse(stimulus_type=='burn-in',NA,correct)) %>% #normalize_scores(targets_ratio, lures_ratio, skewness, lumpiness) %>% ungroup() pca <- prcomp(NB_modified[,c('targets','lures','skewness','lumpiness')], center = TRUE,scale. = TRUE) NB_modified <- NB_modified %>% mutate(pc1=pca$x[,'PC1'], pc2=pca$x[,'PC2']) ## participant-level averaged NB, a single row represent an observation for a single subject ## in a single condition NB_avg <- NB_modified %>% group_by(participant, condition) %>% mutate(correct = ifelse(stimulus_type=='burn-in',NA,correct)) %>% summarise( targets=sum(targets), lures=sum(lures), skewness=sum(skewness), lumpiness=sum(lumpiness), rt = mean(rt, na.rm=T), correct=sum(correct,na.rm=T)/90) %>% ungroup() # print # NB_modified %>% # filter(participant=='P1') %>% # View() # fit <- lm(correct ~ t * s * u * l * d, NB_modified) ``` ```{r} # DBSCAN Clustering (RT+ACCURACY against skewness) NB_avg <- NB_avg %>% mutate(cluster = dbscan(cbind(correct,rt), eps = 0.3, minPts = 3)$cluster) NB_avg %>% ggplot(aes(skewness, correct, color=factor(cluster))) + ggtitle(" clusters (window = 16 trials)", "NOTE: each point is a single participant") + geom_point(alpha=0.3) + #geom_smooth(method='lm', se = F) + facet_wrap(~condition) ``` ```{r} ## single-subject figures NB_modified %>% ggplot(aes(t,s,color=correct)) + geom_jitter() + geom_point() + stat_summary(fun.y="mean") NB_modified %>% inspect_cor(show_plot = T) NB_avg %>% inspect_cor(show_plot = T) NB_modified %>% ggplot(aes(rt,correct,color=u)) + geom_jitter() + geom_point() + stat_summary(fun.y="mean") NB_modified %>% filter(!is.na(correct)) %>% ggplot(aes(jitter(s),jitter(t),color=correct)) + geom_jitter() + geom_point(alpha=0.1) NB_modified %>% filter(!is.na(correct)) %>% ggplot(aes(jitter(s),jitter(u),color=correct)) + geom_jitter() + geom_point() + facet_wrap(~condition) # rt/accuracy and lures NB_modified %>% filter(!is.na(correct)) %>% ggplot(aes(jitter(l),rt,color=correct,alpha=0.01)) + geom_jitter() + geom_point(shape=16) + geom_smooth(method="lm",se = F) + facet_wrap(~condition, scales="free") NB_modified %>% filter(!is.na(correct)) %>% ggplot(aes(pc1,pc2,color=correct)) + geom_point() + geom_smooth(method="lm",se = F) + facet_wrap(~condition, scales="free") NB_modified %>% filter(!is.na(correct)) %>% ggplot(aes(pc1,rt,color=correct)) + geom_point(alpha=0.3) + geom_smooth(method="lm",se = F) + facet_wrap(~condition, scales="free") NB_modified %>% filter(!is.na(correct)) %>% ggplot(aes(pc1,correct,color=correct)) + geom_point() + geom_smooth(method="lm",se = F) + facet_wrap(~condition, scales="free") ``` ## TODO - data %>% mutate(constraint1=fitness1(history), constrain2=fitness2(history), - constraint3=fitness(history)) - kmeans(NB) - ggplot(kmeans_clusters$accuracy) - ggplot(kmeans_clusters$rt) - ```{python} a=2 p ```