#%% import numpy as np import matplotlib.pyplot as plt def fit_umap(X): from sklearn.manifold import UMAP umap = UMAP(n_neighbors=10, n_components=2, random_state=42) return umap.fit_transform(X) X = np.random.rand(100, 2) X_umap = fit_umap(X) fig, ax = plt.subplots() ax.scatter(X_umap[:, 0], X_umap[:, 1]) plt.show()