Newer
Older
notebooks / python / pandas.ipynb
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": true,
    "pycharm": {
     "is_executing": false,
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['head', 'tail', 'head', 'head', 'head', 'head', 'head', 'tail', 'tail', 'head']\n"
     ]
    }
   ],
   "source": [
    "import numpy as np\n",
    "\n",
    "np.random.seed(123)\n",
    "coins = []\n",
    "coins_random_walk = [0]\n",
    "for i in range(10):\n",
    "    if np.random.randint(0,2) == 0:\n",
    "        coins_random_walk.append(0)\n",
    "        coins.append(\"head\")\n",
    "    else:\n",
    "        coins.append(\"tail\")\n",
    "print(coins)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "A = [1,2,3]\n",
    "B = A + [4,5]\n",
    "B.append(6)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "is_executing": false,
     "name": "#%% \n"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": [
       "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAfmElEQVR4nO3de5hVdd338fdHDjognnUs0KAk8wTcOCCo6RiJhzDsdIvlKbPRLq3bSssOT9pt3Y+VdVtpIlcZHTUzKZ8yw8qtpkggmAGGEQICmgQKbkBhZr7PH2tBm+3MMLNm1p494+d1XfuatX6/31r7u5duP67DXksRgZmZWRa7dHcBZmbWczlEzMwsM4eImZll5hAxM7PMHCJmZpaZQ8TMzDJziJh1MUmflfTdNvovkPSnStZklpe+3V2AWU8jqVgyOwB4BWhK5y+OiP8pGTsUeBroFxGNlarRrFIcImYdFBG7b5uWtAy4KCJ+330VmXUfH84y62KSrpH043T2wfTvi5KKksa3MP4tku6TtE7SYkn/WblqzTrHIWKWrxPSv3tFxO4RMau0U9JA4D7gp8ABwNnAdyQdUdkyzbJxiJh1r0nAsoj4fkQ0RsQ84BfAe7u5LrN28TkRs+71BuAYSS+WtPUFftRN9Zh1iEPELF87u032M8ADEXFyJYox62o+nGWWrzVAM/DGVvp/DbxZ0rmS+qWvMZIOq1yJZtk5RMxyFBGbgC8DD0t6UdK4sv6XgInAFGA18BzwFWDXStdqloX8UCozM8vKeyJmZpaZQ8TMzDJziJiZWWYOETMzy6xX/U5kv/32i6FDh3Z3GWYGbNy4kYEDB3Z3GVWhmrfFY4899q+I2D/r8r0qRIYOHcrcuXO7uwwzAwqFAvX19d1dRlWo5m0haXlnlvfhLDMzy8whYmZmmTlEzMwsM4eImZll5hAxM7PMetXVWdazbGnawl+e+wt/fPqPrHt5Hfvstg8nDT2JkQeOZNe+vv+gWU/gELFusW7zOr4+6+us2rCKPXbdg9367saql1Zx05ybGLzHYD45/pPsO2Df7i7TzHYi18NZkv5L0gJJCyVd3kK/JH1L0hJJT0gaXdJ3qqTFad9VedZpldXU3MQ3Z3+TNRvXMHSvoexTsw8D+g1gn5p9GLb3MNZtXscNs2+gqbmpu0s1s53ILUQkHQl8GBgLjAQmSRpeNuw0YHj6agBuTpftA9yU9h8OnC3p8LxqtcpavHYxy19czusHvb7F/gN3P5Bn1j/Dk/96ssKVmVlH5bknchjwaERsiohG4AHgXWVjJgM/jMSjwF6SXkcSPEsiYmlEbAFuT8daLzB75Wx27dP2OY+avjXMemZWhSoys6zyPCeyAPiypH2BzcDpQPk9SQaTPGN6m5VpW0vtx7T0JpIaSPZiqK2tpVAodEXtlqOBGwdyfBxP32Lr//q9qflN9H+uv/959mDFYtH//FK9eVvkFiIR8aSkrwD3AUXgL0Bj2TC1tGgb7S29zzRgGkBdXV1U6/1p7N/uWHgHD/zjAYbsPqTVMSs3rORtB7+N+qPqK1eYdalqvl9UpfXmbZHrifWI+F5EjI6IE4B1wN/LhqwEDiqZH0LynOnW2q0XOPagY2lsbqQ5mlvsjwgamxs57qDjKlyZmXVU3ldnHZD+PRh4N3Bb2ZC7gfPSq7TGAesj4llgDjBc0jBJ/YEp6VjrBQYPGszxBx/PsheXvSpImqOZZS8uY/yQ8Ry858HdVKGZtVfevxP5RXpOZCtwaUS8IOkSgIiYCtxDcq5kCbAJ+GDa1yjpMuB3QB/g1ohYmHOtViGSOH/k+fTfpT/3L78fAvr16cfWpq0A1A+t5wMjPoDU0lFNM6smuYZIRLy1hbapJdMBXNrKsveQhIz1Qv369OO8Uedx+ptPZ/6z83lh8wvsXbM3ow4cxf4DMz8fx8wqzL9Yt26134D9OPlNJ3d3GWaWkW/AaGZmmTlEzMwsM4eImZll5hAxM7PMHCJmZpaZQ8TMzDJziJiZWWYOETMzy8whYmZmmTlEzMwsM4eImZll5hAxM7PMHCJmZpaZQ8TMzDJziJiZWWa5Pk9E0seBi4AA/gp8MCJeLum/EvhASS2HAftHxDpJy4CXgCagMSLq8qzVzMw6Lrc9EUmDgY8BdRFxJMljbqeUjomIr0XEqIgYBXwGeCAi1pUMOSntd4CYmVWhvA9n9QVqJPUFBgCr2xh7NnBbzvWYmVkXyu1wVkSsknQ9sALYDMyMiJktjZU0ADgVuKx0FcBMSQHcEhHTWlm2AWgAqK2tpVAodN2HMLPMisWiv4+p3rwtcgsRSXsDk4FhwIvAzyWdExE/bmH4GcDDZYeyjouI1ZIOAO6T9LeIeLB8wTRcpgHU1dVFfX19V38UM8ugUCjg72OiN2+LPA9nvR14OiLWRMRW4C7g2FbGTqHsUFZErE7/Pg/MAMbmWKuZmWWQZ4isAMZJGiBJwATgyfJBkvYETgR+VdI2UNKgbdPARGBBjrWamVkGeZ4TmS3pTmAe0AjMB6ZJuiTtn5oOfRfJ+ZKNJYvXAjOS7KEv8NOIuDevWs3MLJtcfycSEVcDV5c1Ty0bMx2YXta2FBiZZ21mZtZ5/sW6mZll5hAxM7PMHCJmZpaZQ8TMzDJziJiZWWYOETMzy8whYmZmmTlEzMwsM4eImZll5hAxM7PMHCJmZpaZQ8TMcrP77rvvMD99+nQuu+yyVkZ3zrHHtvakCcuTQ8TMqlZjY2O7xz7yyCM5VmKtcYiYWbdYs2YN73nPexgzZgxjxozh4YcfBuCaa66hoaGBiRMnct5559HU1MSVV17JmDFjGDFiBLfcckuL69u21/Pss89ywgknMGrUKI488kgeeuihV4296qqrOPzwwxkxYgRXXHEFAMuXL2fChAmMGDGCCRMmsGLFCgAuuOACPvKRj3DSSSfxxje+kQceeIALL7yQww47jAsuuGD7OmfOnMn48eMZPXo073vf+ygWi125uapXRPSa19FHHx1mVh3uv//+2GWXXWLkyJHbXwcddFBceumlERFx9tlnx0MPPRQREcuXL4+3vOUtERFx9dVXx+jRo2PTpk0REXHLLbfEtddeGxERL7/8chx99NGxdOnSV73fwIEDIyLi+uuvjy996UsREdHY2BgbNmzYYdzatWvjzW9+czQ3N0dExAsvvBAREZMmTYrp06dHRMT3vve9mDx5ckREnH/++XHWWWdFc3Nz/PKXv4xBgwbFE088EU1NTTF69OiYP39+rFmzJt761rdGsViMiIjrrrsuvvjFL+6wLaoVMDc68d/dXJ8nIunjwEVAAH8FPhgRL5f015M80fDptOmuiPjvtO9U4JtAH+C7EXFdnrWaWderqanh8ccf3z4/ffp05s6dC8Dvf/97Fi1atL1vw4YNvPTSSwC8853vpKamBkj+D/+JJ57gzjvvBGD9+vX8/e9/Z9iwYS2+55gxY7jwwgvZunUrZ555JqNGjdqhf4899mC33Xbjoosu4h3veAeTJk0CYNasWdx1110AnHvuuXzqU5/avswZZ5yBJI466ihqa2s56qijADjiiCNYtmwZK1euZNGiRRx33HEAbNmyhfHjx2fcaj1LbiEiaTDwMeDwiNgs6Q6SZ6lPLxv6UERMKlu2D3ATcDKwEpgj6e6IWISZ9QrNzc3MmjVre1iUGjhw4PbpiODb3/42p5xySrvWe8IJJ/Dggw/ym9/8hnPPPZcrr7yS8847b3t/3759+fOf/8wf/vAHbr/9dm688Ub++Mc/vmo96ZNVAdh1110B2GWXXbZPb5tvbGykT58+nHzyydx2223tqrE3yfucSF+gRlJfYACwup3LjQWWRMTSiNgC3A5MzqlGM+sGEydO5MYbb9w+X7rHUuqUU07h5ptvZuvWrQA89dRTbNy4scWxkJzbOOCAA/jwhz/Mhz70IebNm7dDf7FYZP369Zx++unccMMN29/32GOP5fbbbwfgJz/5Cccff3y7P8u4ceN4+OGHWbJkCQCbNm3iqaeeavfyPVmez1hfJel6YAWwmeQ56jNbGDpe0l9IAuaKiFgIDAaeKRmzEjimpfeR1AA0ANTW1lIoFLruQ5hZZsVikaamph2+k3/7299YtWoVhUKBs846ixtuuIGpU6fS1NTEiBEj+MQnPsGyZcuoqanZvtwhhxzCwIEDOfTQQ4kI9tprL6699tpXXT687b3uvfdefvazn9G3b19qamr4zGc+s0MNa9eu5fOf/zxbtmwhImhoaKBQKPD+97+fr371q1xzzTXsueeefPrTn6ZQKPDcc8+xcOFC9ttvP5577jk2bty4fX2lfZdffjmTJk3aHnYXXnjh9sNbxWKx1/63Scl5lRxWLO0N/AI4C3gR+DlwZ0T8uGTMHkBzRBQlnQ58MyKGS3ofcEpEXJSOOxcYGxEfbes96+rqYtvxVjPrXoVCgfr6+u4uoypU87aQ9FhE1GVdPs/DWW8Hno6INRGxFbgL2OHXQBGxISKK6fQ9QD9J+5HseRxUMnQI7T8UZmZmFZJniKwAxkkaoOQM1QTgydIBkg5M+5A0Nq1nLTAHGC5pmKT+JCfk786xVjMzyyDPcyKzJd0JzAMagfnANEmXpP1TgfcCH5HUSHLeZEp63XKjpMuA35Fc4ntreq7EzMyqSK6/E4mIq4Gry5qnlvTfCNxIC9LDW/fkV52ZmXWWb3tiZmaZOUTMzCwzh4iZmWXmEDEzs8wcImZmlplDxMzMMnOImJlZZg4RMzPLzCFiZmaZOUTMzCwzh4iZmWXmEDEzs8wcImZmlplDxMzMMnOImJlZZrmGiKSPS1ooaYGk2yTtVtb/AUlPpK9HJI0s6Vsm6a+SHpfkB6ebmVWh3EJE0mDgY0BdRBxJ8oTCKWXDngZOjIgRwLXAtLL+kyJiVGceIm9mZvnJ9cmG6fprJG0FBgCrSzsj4pGS2UeBITnXY2ZmXSi3PZGIWAVcD6wAngXWR8TMNhb5EPDb0lUAMyU9JqkhrzrNzCy73PZEJO0NTAaGAS8CP5d0TkT8uIWxJ5GEyPElzcdFxGpJBwD3SfpbRDzYwrINQANAbW0thUKh6z+MmXVYsVj09zHVm7dFnoez3g48HRFrACTdBRwL7BAikkYA3wVOi4i129ojYnX693lJM4CxwKtCJCKmkZ5Lqauri/r6+lw+jJl1TKFQwN/HRG/eFnlenbUCGCdpgCQBE4AnSwdIOhi4Czg3Ip4qaR8oadC2aWAisCDHWs3MLIPc9kQiYrakO4F5QCMwH5gm6ZK0fyrwBWBf4DtJztCYXolVC8xI2/oCP42Ie/Oq1czMssn16qyIuBq4uqx5akn/RcBFLSy3FBhZ3m5mZtXFv1g3M7PMHCJmZpZZq4ezJO3T1oIRsa7ryzEzs56krXMij5H84E8t9AXwxlwqMjOzHqPVEImIYZUsxMzMep6dnhNR4hxJ/yedP1jS2PxLMzOzateeE+vfAcYD70/nXwJuyq0iMzPrMdrzO5FjImK0pPkAEfGCpP4512VmZj1Ae/ZEtkrqQ3IyHUn7A825VmVmZj1Ce0LkW8AMoFbSl4E/Af+Ta1VmZtYj7PRwVkT8RNJjJDdQBDgzIp5saxkzM3ttaO+9swaQPN42gJr8yjEzs56kPZf4fgH4AbAPsB/wfUmfz7swMzOrfu3ZEzkb+I+IeBlA0nUkt3f/Up6FmZlZ9WtPiCwDdgNeTud3Bf6RV0HW9V55BZ56Kvl74IEweDCopZvZmJl1UFs3YPw2yTmQV4CFku5L508muULLeoBZs+BHP4KX0/8FaG6GI46AhgbYc8/urc3Mer62zonMJbkJ4wzgs8D9QAH4HPDb9qxc0sclLZS0QNJtknYr65ekb0laIukJSaNL+k6VtDjtu6qDn8uABQvg5pth0CA4+ODk9YY3wOLF8I1vQFNTd1doZj1dWzdg/EFnVixpMPAx4PCI2CzpDmAKML1k2GnA8PR1DHAzcEz648abSPZ6VgJzJN0dEYs6U9NrSQTMmAF77QU1JdfTSTBkCCxbBosWwVFHdVuJZtYLtOfqrOGS7pS0SNLSba92rr8vUCOpL8llwqvL+icDP4zEo8Bekl4HjAWWRMTSiNgC3J6OtXbavBmWLoW99265v1+/JETMzDqjPSfWv0/ynPT/BU4CPkjLzxjZQUSsknQ9sALYDMyMiJllwwYDz5TMr0zbWmo/pqX3kdQANADU1tZSKBR2/oleAyLgxBOhf/+WT6IPG5b0eXNZXorFor+Pqd68LdoTIjUR8QdJiojlwDWSHiIJllZJ2ptk72EY8CLwc0nnRMSPS4e1sGhbD8J6dWPENGAaQF1dXdTX1+/s87xmfPWrsHw57L//ju0RyeGsz34WDj20W0qz14BCoYC/j4nevC3ac++slyXtAvxd0mWS3gUc0I7l3g48HRFrImIrcBdwbNmYlcBBJfNDSA55tdZuHfDud8OmTbBhw7/bmppgxQo4/HAYPrz7ajOz3qE9IXI5yfmMjwFHA+cA57VjuRXAOEkDJInk3lvl99y6GzgvvUprHLA+Ip4F5gDDJQ1Lbzs/JR1rHXDIIXDFFdCnT7JH8swzsGoVHHccfPSjsEt7/umbmbWhPTdgnJNOFknOh5Ce65i9k+VmS7qT5NftjcB8YJqkS9L+qcA9wOnAEmDTtvVHRKOky4Dfkdyz69aIWNjhT2cccQR85SvJ3scrr0BtbXLFlplZV2jvDRjL/Sdwxc4GRcTVvPrcydSS/gAubWXZe0hCxjppl11g6NDursLMeqOsBzR80wwzM2vztif7tNaFQ8TMzGj7cNZjtH657ZZ8yjEzs56krdueDKtkIWZm1vP4Ik8zM8vMIWJmZpm1GiKS7pE0tHKlmJlZT9PWnsh0YKakz0nqV6F6zMysB2nrxPodkn4DfAGYK+lHQHNJ/zcqUJ+ZmVWxnf1ifSuwkeS56oMoCREzM7O2fmx4KvANkhsfjo6ITRWryszMeoS29kQ+B7zPNz40M7PWtHVO5K2VLMTMzHoe/07EzMwyc4iYmVlmuYWIpEMlPV7y2iDp8rIxV5b0L5DUtO3uwZKWSfpr2jc3rzrNzCy7rA+l2qmIWAyMApDUB1gFzCgb8zXga+mYM4CPR8S6kiEnRcS/8qrRzMw6p1KHsyYA/4iI5W2MORu4rUL1mJlZF8htT6TMFNoICEkDgFOBy0qag+S2KwHcEhHTWlm2AWgAqK2tpVAodFXNZtYJxWLR38dUb94WSh5znuMbSP2B1cAREfHPVsacBZwTEWeUtL0+IlZLOgC4D/hoRDzY1nvV1dXF3Lk+fWJWDQqFAvX19d1dRlWo5m0h6bGIqMu6fCUOZ50GzGstQFKv2lOJiNXp3+dJzqWMza1CMzPLpBIh0ua5Dkl7AicCvyppGyhp0LZpYCKwIOc6zcysg3I9J5Ke6zgZuLik7RKAiJiaNr0LmBkRG0sWrQVmSNpW408j4t48azUzs47LNUTSmzbuW9Y2tWx+OsmzS0rblgIj86zNzMw6z79YNzOzzBwiZmaWmUPEzMwyc4iYmVlmDhEzM8vMIWJmZpk5RMzMLDOHiJmZZeYQMTOzzBwiZmaWmUPEzMwyc4iYmVlmDhEzM8vMIWJmZpk5RMzMLDOHiJmZZZZbiEg6VNLjJa8Nki4vG1MvaX3JmC+U9J0qabGkJZKuyqtOMzPLLrcnG0bEYmAUgKQ+wCpgRgtDH4qISaUN6fibSB6tuxKYI+nuiFiUV71mZtZxlTqcNQH4R0Qsb+f4scCSiFgaEVuA24HJuVVnZmaZ5PqM9RJTgNta6Rsv6S/AauCKiFgIDAaeKRmzEjimpYUlNQANALW1tRQKha6q2cw6oVgs+vuY6s3bIvcQkdQfeCfwmRa65wFviIiipNOBXwLDAbUwNlpaf0RMA6YB1NXVRX19fVeUbWadVCgU8Pcx0Zu3RSUOZ50GzIuIf5Z3RMSGiCim0/cA/STtR7LncVDJ0CEkeypmZlZFKhEiZ9PKoSxJB0pSOj02rWctMAcYLmlYuiczBbi7ArWamVkH5Ho4S9IAkiusLi5puwQgIqYC7wU+IqkR2AxMiYgAGiVdBvwO6APcmp4rMTOzKpJriETEJmDfsrapJdM3Aje2suw9wD151mdmZp3jX6ybmVlmDhEzM8vMIWJmZpk5RMzMLDOHiJmZZeYQMTOzzBwiZmaWmUPEzMwyc4iYmVlmDhEzM8vMIWJmZpk5RMzMLDOHiJmZZeYQMTOzzBwiZmaWWW4hIulQSY+XvDZIurxszAckPZG+HpE0sqRvmaS/psvOzatOMzPLLreHUkXEYmAUgKQ+wCpgRtmwp4ETI+IFSacB04BjSvpPioh/5VWjmZl1Tq5PNiwxAfhHRCwvbYyIR0pmHwWGVKgeMzPrApUKkSnAbTsZ8yHgtyXzAcyUFMAtETGtpYUkNQANALW1tRQKhc5Xa2adViwW/X1M9eZtoYjI9w2k/sBq4IiI+GcrY04CvgMcHxFr07bXR8RqSQcA9wEfjYgH23qvurq6mDvXp0/MqkGhUKC+vr67y6gK1bwtJD0WEXVZl6/E1VmnAfPaCJARwHeBydsCBCAiVqd/nyc5lzK2ArWamVkHVCJEzqaVQ1mSDgbuAs6NiKdK2gdKGrRtGpgILKhArWZm1gG5nhORNAA4Gbi4pO0SgIiYCnwB2Bf4jiSAxnS3qhaYkbb1BX4aEffmWauZmXVcriESEZtIQqK0bWrJ9EXARS0stxQYWd5uZmbVxb9YNzOzzBwiZmaWmUPEzMwyc4iYmVlmDhEzM8vMIWJmZpk5RMzMLDOHiJmZZeYQMTOzzBwiZmaWmUPEzMwyc4iYmVlmDhEzM8vMIWJmZpk5RMzMLLPcQkTSoZIeL3ltkHR52RhJ+pakJZKekDS6pO9USYvTvqvyqtPMzLLL7aFUEbEYGAUgqQ+wiuRZ6aVOA4anr2OAm4Fj0vE3kTwVcSUwR9LdEbEor3rNzKzjKnU4awLwj4hYXtY+GfhhJB4F9pL0OmAssCQilkbEFuD2dGz7NTfDz34G118Pa9d2wUcwM7NylQqRKcBtLbQPBp4pmV+ZtrXW3n7r1sGvfw2zZ8P8+R2r1szM2iXXZ6wDSOoPvBP4TEvdLbRFG+0trb8BaACora2lUCj8u/PMM2HLlmS6tN3MclcsFnf8Pr6G9eZtkXuIkJz3mBcR/2yhbyVwUMn8EGA10L+V9leJiGnANIC6urqor6/vgpLNrLMKhQL+PiZ687aoxOGss2n5UBbA3cB56VVa44D1EfEsMAcYLmlYuiczJR1rZmZVJNc9EUkDSK6wurik7RKAiJgK3AOcDiwBNgEfTPsaJV0G/A7oA9waEQvzrNXMzDou1xCJiE3AvmVtU0umA7i0lWXvIQkZMzOrUv7FupmZZeYQMTOzzBwiZmaWmUPEzMwyc4iYmVlmSi6Q6h0krQHK789l/7YnsL67i2hDJevL6726ar2dWU9Hl81r/H7Avzqw3t6smrfFoRExKOvClfjFesVExP7dXUM1kzQtIhq6u47WVLK+vN6rq9bbmfV0dNm8xkuaGxF17V1vb1bN20LS3M4s78NZry3/r7sL2IlK1pfXe3XVejuzno4um/d468V61eEsM6se1fx/35VWzduis7V5T8TM8jKtuwuoItW8LTpVm/dEzMwsM++JmJlZZg4RMzPLzCFiZplIulXS85IWlLTtI+k+SX9P/+7dnTVWiqSDJN0v6UlJCyX9V9re7dtD0m6S/izpL2ltX+zK2hwiZpbVdODUsrargD9ExHDgD+n8a0Ej8MmIOAwYB1wq6XCqY3u8ArwtIkYCo4BT04cAdkltDhEzyyQiHgTWlTVPBn6QTv8AOBNA0ick3ZpOHyVpQfrQul4hIp6NiHnp9EvAk8BgqmB7RKKYzvZLX9FVtTlEzKwr1aaPuCb9e0DafgNwiKR3Ad8HLk4fWtfrSBoK/AcwmyrZHpL6SHoceB64LyK6rDaHiJnlLiKagQuAHwEPRMTD3VtRPiTtDvwCuDwiNrQ2rtLbIyKaImIUMAQYK+nIrqrNIWJmXemfkl4HkP59vqRvOFAEXt8dheVNUj+SAPlJRNyVNlfV9oiIF4ECybmsLqnNIWJmXelu4Px0+nzgVwCS9gS+CZwA7Cvpvd1TXj4kCfge8GREfKOkq9u3h6T9Je2VTtcAbwf+1lW1+RfrZpaJpNuAepLbnP8TuBr4JXAHcDCwAnhfRKxLT9Q+HhHfknQQcD9wbEQ83+LKexhJxwMPAX8FmtPmz5KcF+nW7SFpBMmJ8z4kOw53RMR/S9q3K2pziJiZWWY+nGVmZpk5RMzMLDOHiJmZZeYQMTOzzBwiZmaWmUPErA3p3VmflrRPOr93Ov+GFsYWX72GVtd7jaQrOlhLu9dvVikOEbM2RMQzwM3AdWnTdcC0iFjefVWZVQ+HiNnO/S8wTtLlwPHA19u7oKQzJM2WNF/S7yXVlnSPlPTH9HkOHy5Z5kpJcyQ9se3ZD2bVqm93F2BW7SJiq6QrgXuBiRGxpQOL/wkYFxEh6SLgU8An074RJM+eGAjMl/Qb4EiS+xaNBQTcLemE9LbrZlXHIWLWPqcBz5L8R/6+Diw3BPhZeoO7/sDTJX2/iojNwGZJ95MEx/HARGB+OmZ3klBxiFhV8uEss52QNAo4mWSv4ePb7nzaTt8GboyIo4CLgd1K+srvORQkex//NyJGpa9DIuJ7nSjfLFcOEbM2pHdnvZnk+RArgK8B13dgFXsCq9Lp88v6JqfPv96X5EaGc4DfARemz6VA0mBJB2BWpXw4y6xtHwZWRMS2Q1jfAS6QdGJEPFA2doCklSXz3wCuAX4uaRXwKDCspP/PwG9I7qJ6bUSsBlZLOgyYleQXReAcdnzWg1nV8F18zcwsMx/OMjOzzBwiZmaWmUPEzMwyc4iYmVlmDhEzM8vMIWJmZpk5RMzMLLP/Dxhg608AqsBvAAAAAElFTkSuQmCC\n"
      ],
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# matplotlib\n",
    "import matplotlib.pyplot as plt\n",
    "plt.scatter([1,2,3], [7,8,9], s=[3,60,90], c=['red','blue','green'], alpha=0.5)\n",
    "\n",
    "plt.text(10, 8.5, \"Here is some\")\n",
    "\n",
    "plt.grid(True)\n",
    "\n",
    "plt.xscale('log') \n",
    "plt.xlabel(\"X Label\")\n",
    "plt.ylabel(\"Y Label\")\n",
    "plt.title(\"Title\")\n",
    "plt.xticks([10,20,30], [\"10x\", \"20x\",\"30x\"])\n",
    "plt.show()"
   ]
  }
 ],
 "metadata": {
  "authors": [
   {
    "name": "Morteza Ansarinia"
   }
  ],
  "description": "Some random codes to learn/train/remember pandas :-)\n",
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  },
  "pycharm": {
   "stem_cell": {
    "cell_type": "raw",
    "metadata": {
     "collapsed": false
    },
    "source": [
     "Simulate \n"
    ]
   }
  },
  "tags": [
   "pandas",
   "playground"
  ],
  "title": "Pandas Playground"
 },
 "nbformat": 4,
 "nbformat_minor": 0
}