NB_avg %>% mutate(cluster = dbscan::dbscan(cbind(accuracy,rts), eps = 0.5, minPts = 3)$cluster) %>% ggplot(aes(targets, accuracy, color=factor(cluster))) + ggtitle("targets (window = 8 trials)", "NOTE: each point is a single participant") + geom_point(alpha=0.3) + #geom_smooth(method='lm', se = F) + facet_wrap(~condition) NB_avg %>% ggplot(aes(lures, accuracy, color=condition)) + ggtitle("lures (window = 8 trials)", "NOTE: each point is a single participant") + geom_point(alpha=0.3) + geom_smooth(method='lm', se = F) NB_avg %>% ggplot(aes(skewness, accuracy, color=condition)) + ggtitle("skewness (window = 8 trials)", "NOTE: each point is a single participant") + geom_point(alpha=0.3) + geom_smooth(method='lm', se = F) NB_avg %>% ggplot(aes(lumpiness, accuracy, color=condition)) + ggtitle("lumpiness", "NOTE: each point is a single participant") + geom_point(alpha=0.3) + geom_smooth(method='lm', se = F) NB_avg %>% ggplot(aes(lumpiness, rts, color=condition)) + ggtitle("lumpiness (window = 8 trials)", "NOTE: each point is a single participant") + xlab("lumpiness") + ylab("Average RT") + geom_point(alpha=0.3) + geom_smooth(method='lm', se = F) nback <- NB_modified nback %>% mutate(block=as.factor(block)) %>% mutate(trial=as.factor(trial)) %>% mutate(condition=ifelse(condition=='2-back',2,3)) %>% #filter(condition=='3-back') %>% #mutate(correct=as.numeric(correct)) %>% inspect_cor(show_plot = T) averaged_nback <- NB_avg averaged_nback %>% mutate(condition=ifelse(condition=='2-back',2,3)) %>% inspect_cor(show_plot = T)