{ "cells": [ { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true, "pycharm": { "name": "#%%\n", "is_executing": false } }, "outputs": [ { "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-9-210974036465>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mcoins_random_walk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0mcoins\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"head\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mTypeError\u001b[0m: append() takes exactly one argument (0 given)" ], "ename": "TypeError", "evalue": "append() takes exactly one argument (0 given)", "output_type": "error" } ], "source": [ "import numpy as np\n", "\n", "np.random.seed(123)\n", "coins = []\n", "coins_random_walk = [0]\n", "for i in range(10):\n", " if np.random.randint(0,2) == 0:\n", " coins_random_walk.append()\n", " coins.append(\"head\")\n", " else:\n", " coins.append(\"tail\")\n", "print(coins)" ] }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "A = [1,2,3]\n", "B = A + [4,5]\n", "B.append(6)\n" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n", "is_executing": false } } }, { "cell_type": "code", "execution_count": 18, "outputs": [ { "data": { "text/plain": "<Figure size 432x288 with 1 Axes>", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAf9klEQVR4nO3deZQU9b3+8ffDIgxoEETHBFQw7gsQHBRcxw2Xg2IWr5iouGJyNEaNJjGLGjX3qvFqEk1ETjTkJkaNRBN+iTHg0tG4oAiKilFRARmXoGxpRGFmPr8/usBmnBlmaqZ6msnzOqfPVH2/36r+TEHzUEtXKSIwMzNLo0tHF2BmZhsvh4iZmaXmEDEzs9QcImZmlppDxMzMUnOImJlZag4Rs3Ym6buSftlM/6mS/lHKmsyy0q2jCzDb2EjKF832Aj4C6pL5syPiv4vGDgLeALpHRG2pajQrFYeIWStFxKZrpyXNB86MiAc6riKzjuPDWWbtTNLlkn6bzD6S/FwmKS9pVCPjd5E0XdISSS9L+q/SVWvWNg4Rs2wdmPzcPCI2jYgnijsl9QamA78DtgLGAb+QtFtpyzRLxyFi1rHGAPMj4lcRURsRs4E/AMd3cF1mLeJzImYdaztgH0nLitq6Ab/poHrMWsUhYpatDd0m+03g7xFxeCmKMWtvPpxllq3FQD2wfRP9fwZ2knSypO7Ja4SkXUtXoll6DhGzDEXEB8CPgMckLZM0skH/v4HRFE6ovwW8A1wD9Ch1rWZpyA+lMjOztLwnYmZmqTlEzMwsNYeImZml5hAxM7PUOtX3RPr37x+DBg3q6DLMDFi5ciW9e/fu6DLKQjlvi2eeeea9iNgy7fKdKkQGDRrEzJkzO7oMMwNyuRzV1dUdXUZZKOdtIWlBW5b34SwzM0vNIWJmZqk5RMzMLDWHiJmZpeYQMTOz1DrV1Vm2cVldt5rn3nmOh954iCUfLqFfz34cPOhghm49lB7dfP9Bs42BQ8Q6xJJVS/jfJ/6XmhU1fKrHp+jZrSc1/67h50//nAGfGsA3R32TLXpt0dFlmtkGZHo4S9I3JL0g6UVJ5zfSL0k/kzRP0hxJw4v6xkt6NXmNz7JOK626+jp+OuOnLF65mEGbD6JfRT96de9Fv4p+DO47mCWrlvCTGT+hrr6uo0s1sw3ILEQk7QGcBewNDAXGSNqhwbCjgB2T1wTg5mTZfsBlwD7J8pdJ6ptVrVZaL7//MguWLeAzm32m0f6tN92aN5e/yUvvvVTiysystbLcE9kVmBERH0RELfB34AsNxowF/i8KngQ2l/Rp4AhgekQsiYilwHTgyAxrtRKasWgGPbo2f86jolsFT7z5RIkqMrO0sjwn8gLwI0lbAKuAo4GG9yQZQOEZ02stStqaav8ESRMo7MVQWVlJLpdrj9otQ71X9mb/2J9u+ab/+n22/rNs8s4m/vPciOXzef/5JTrztsgsRCLiJUnXANOAlcCzQLsf5I6IScAkgKqqqijX+9PYx37/4u/5+2t/Z+CmA5scs2jFIg7Z9hCq96wuXWHWrsr5flGl1pm3RaYn1iPi1ojYKyIOBJYCrzQYUgNsUzQ/MGlrqt06gX232Zfa+lrqo77R/oigtr6W/bbZr8SVmVlrZX111lbJz20pnA/5XYMhU4FTkqu0RgLLI+Jt4G/AaEl9kxPqo5M26wQGbDaA/bfdn/nL5n8iSOqjnvnL5jNq4Ci27bNtB1VoZi2V9fdE/pCcE1kDnBMRyyR9FSAiJgL3UThXMg/4ADgt6Vsi6Urg6WQ9V0TEkoxrtRKRxPih49mkyyY8vOBhCOjetTtr6tYAUD2omq8M+QqSOrhSM9uQTEMkIg5opG1i0XQA5zSx7G3AbdlVZx2pe9funDLsFI7e6Whmvz2bpauW0reiL8O2HsaWvVM/H8fMSszfWLcO1b9Xfw7/7OEdXYaZpeQbMJqZWWoOETMzS80hYmZmqTlEzMwsNYeImZml5hAxM7PUHCJmZpaaQ8TMzFJziJiZWWoOETMzS80hYmZmqTlEzMwsNYeImZml5hAxM7PUHCJmZpZaps8TkXQBcCYQwPPAaRHxYVH/DcDByWwvYKuI2Dzpq0uWAVgYEcdmWauZmbVeZiEiaQBwHrBbRKyS9HtgHDB57ZiIuKBo/NeBzxWtYlVEDMuqPjMza7usD2d1AyokdaOwp/FWM2NPBO7IuB4zM2tHme2JRESNpOuAhcAqYFpETGtsrKTtgMHAQ0XNPSXNBGqBqyPij00sOwGYAFBZWUkul2u/X8LMUsvn8/48JjrztsjycFZfYCyFcFgG3C3ppIj4bSPDxwFTIqKuqG27JIi2Bx6S9HxEvNZwwYiYBEwCqKqqiurq6vb+VcwshVwuhz+PBZ15W2R5OOsw4I2IWBwRa4B7gH2bGDuOBoeyIqIm+fk6kGP98yVmZlYGsgyRhcBISb0kCTgUeKnhIEm7AH2BJ4ra+krqkUz3B/YD5mZYq5mZpZBZiETEDGAKMIvCpbpdgEmSrpBUfLnuOODOiIiitl2BmZKeAx6mcE7EIWJmVmYy/Z5IRFwGXNag+dIGYy5vZLnHgT2zq8zMzNqDv7FuZmapOUTMzCw1h4iZmaXmEDEzs9QcImZmlppDxMzMUnOImJlZag4RMzNLzSFiZmapOUTMzCw1h4iZmaXmEDGzzGy66abrzU+ePJlzzz03k/fad9+mnjRhWXKImFnZqq2tbfHYxx9/PMNKrCkOETPrEIsXL+aLX/wiI0aMYMSIETz22GMAXH755Zx88snst99+nHzyydTV1XHxxRczYsQIhgwZwi233NLo+tbu9bz99tsceOCBDBs2jD322INHH330E2O/853vsNtuuzFkyBAuuugiAObPn88hhxzCkCFDOPTQQ1m4cCEAp556Kl/72tcYOXIk22+/PblcjtNPP51dd92VU089dd06p02bxqhRoxg+fDjHH388+Xy+PTdX+YqITvPaa6+9wszKw8MPPxxdunSJoUOHrntts802cc4550RExIknnhiPPvpoREQsWLAgdtlll4iIuOyyy2L48OHxwQcfRETELbfcEldeeWVERHz44Yex1157xeuvv/6J9+vdu3dERFx33XVx1VVXRUREbW1trFixYr1x7733Xuy0005RX18fERFLly6NiIgxY8bE5MmTIyLi1ltvjbFjx0ZExPjx4+OEE06I+vr6+OMf/xibbbZZzJkzJ+rq6mL48OExe/bsWLx4cRxwwAGRz+cjIuLqq6+OH/7wh+tti3IFzIw2/Lub6fNEJF0AnAkEhQdTnRYRHxb1nwr8GKhJmm6KiF8mfeOB7yftV0XEr7Os1czaX0VFBc8+++y6+cmTJzNz5kwAHnjgAebO/fhZcytWrFj3v/djjz2WiooKoPA//Dlz5jBlyhQAli9fzquvvsrgwYMbfc8RI0Zw+umns2bNGo477jiGDRu2Xn+fPn3o2bMnZ5xxBmPGjGHMmDEAPPHEE9xzzz0AnHzyyXzrW99at8wxxxyDJPbcc08qKyvZc8/C445233135s+fz6JFi5g7dy777bcfAKtXr2bUqFEpt9rGJbMQkTQAOA/YLSJWSfo9hacYTm4w9K6IOLfBsv0oPMyqikIAPSNpakQszapeMyut+vp6nnzySXr27PmJvt69e6+bjghuvPFGjjjiiBat98ADD+SRRx7hL3/5C6eeeioXXnghp5xyyrr+bt268dRTT/Hggw8yZcoUbrrpJh566KFm19mjRw8AunTpsm567XxtbS1du3bl8MMP54477mhRjZ1J1udEugEVkroBvYC3WrjcEcD0iFiSBMd04MiMajSzDjB69GhuvPHGdfPFeyzFjjjiCG6++WbWrFkDwCuvvMLKlSubXO+CBQuorKzkrLPO4swzz2TWrFnr9efzeZYvX87RRx/NDTfcwHPPPQcUru668847Abj99ts54IADWvy7jBw5kscee4x58+YBsHLlSl555ZUWL78xy2xPJCJqJF0HLARWAdMiYlojQ78o6UDgFeCCiHgTGAC8WTRmUdL2CZImABMAKisryeVy7fdLmFlq+Xyeurq69T6T//znP6mpqSGXy3HCCSfwk5/8hIkTJ1JXV8eQIUO48MILmT9/PhUVFeuW22GHHejduzc777wzEcHmm2/OlVde+YnLh9e+1/33389dd91Ft27dqKio4JJLLlmvhvfff5/vf//7rF69mojgrLPOIpfL8eUvf5lrr72Wyy+/nD59+vDtb3+bXC7HO++8w4svvkj//v155513WLly5br1Ffedf/75jBkzZl3YnX766esOb+Xz+U77b5MK51UyWLHUF/gDcAKwDLgbmBIRvy0aswWQj4iPJJ0NnBARh0i6COgZEVcl434ArIqI65p7z6qqqlh7vNXMOlYul6O6urqjyygL5bwtJD0TEVVpl8/ycNZhwBsRsTgi1gD3AOt9Gygi3o+Ij5LZXwJ7JdM1wDZFQwfy8cl3MzMrE1mGyEJgpKRekgQcCrxUPEDSp4tmjy3q/xswWlLfZI9mdNJmZmZlJMtzIjMkTQFmAbXAbGCSpCsoXJc8FThP0rFJ/xLg1GTZJZKuBJ5OVndFRCzJqlYzM0sn0++JRMRlFC7VLXZpUf8lwCVNLHsbcFt21ZmZWVv5tidmZpaaQ8TMzFJziJiZWWoOETMzS80hYmZmqTlEzMwsNYeImZml5hAxM7PUHCJmZpaaQ8TMzFJziJiZWWoOETMzS80hYmZmqTlEzMwsNYeImZmllmmISLpA0ouSXpB0h6SeDfovlDRX0hxJD0rarqivTtKzyWtqlnWamVk6mYWIpAHAeUBVROwBdAXGNRg2O+kfAkwBri3qWxURw5LXsVnVaWZm6WV9OKsbUCGpG9ALeKu4MyIejogPktkngYEZ12NmZu0osxCJiBrgOmAh8DawPCKmNbPIGcBfi+Z7Spop6UlJx2VVp5mZpZfZM9Yl9QXGAoOBZcDdkk6KiN82MvYkoAo4qKh5u4iokbQ98JCk5yPitUaWnQBMAKisrCSXy7X/L2NmrZbP5/15THTmbZFZiACHAW9ExGIASfcA+wLrhYikw4DvAQdFxEdr25M9GSLidUk54HPAJ0IkIiYBkwCqqqqiuro6i9/FzFopl8vhz2NBZ94WWZ4TWQiMlNRLkoBDgZeKB0j6HHALcGxE/Kuova+kHsl0f2A/YG6GtZqZWQqZ7YlExAxJU4BZQC2FK7EmSboCmBkRU4EfA5tSONQFsDC5EmtX4BZJ9RSC7uqIcIiYmZWZLA9nERGXAZc1aL60qP+wJpZ7HNgzw9LMzKwd+BvrZmaWmkPEzMxSa/JwlqR+zS0YEUvavxwzM9uYNHdO5BkgADXSF8D2mVRkZmYbjSZDJCIGl7IQMzPb+GzwnIgKTpL0g2R+W0l7Z1+amZmVu5acWP8FMAr4cjL/b+DnmVVkZmYbjZZ8T2SfiBguaTZARCyVtEnGdZmZ2UagJXsiayR1pXAyHUlbAvWZVmVmZhuFloTIz4B7gUpJPwL+Afx3plWZmdlGYYOHsyLidknPULiBIsBxEfFSc8uYmdl/hpbeO6sXhcfbBlCRXTlmZrYxacklvpcCvwb6Af2BX0n6ftaFmZlZ+WvJnshXgKER8SGApKuBZ4GrsizMzMzKX0tC5C2gJ/BhMt8DqMmsImt3H30Er7xS+Ln11jBgAKixm9mYmbVSczdgvJHCOZDlwIuSpifzhwNPlaY8a6snnoDf/AY+TP4LUF8Pu+8OEyZAnz4dW5uZbfyaOycyk8JNGO8Fvgs8DOQoPA/9Ty1ZuaQLJL0o6QVJd0jq2aC/h6S7JM2TNEPSoKK+S5L2lyUd0arfygB44QW4+WbYbDPYdtvCa7vt4OWX4frroa6uoys0s41dczdg/HVbVixpAHAesFtErJL0e2AcMLlo2BnA0ojYQdI44BrgBEm7JWN3Bz4DPCBpp4jwP3stFAH33gubbw4VRdfTSTBwIMyfD3Pnwp5+fqSZtUFLrs7aUdIUSXMlvb721cL1dwMqJHWjcJnwWw36x1K48gtgCnCoCg9bHwvcGREfRcQbwDzAN31shVWr4PXXoW/fxvu7dy+EiJlZW7TkxPqvKDwn/QbgYOA0WhA+EVEj6TpgIbAKmBYR0xoMGwC8mYyvlbQc2CJpf7Jo3KKk7RMkTQAmAFRWVpLL5VrwK3V+EXDQQbDJJo2fRB88uNDnzWVZyefz/jwmOvO2aEmIVETEg5IUEQuAy5NvsF/a3EKS+lLYoxgMLAPulnRSRPy2zVUXiYhJwCSAqqqqqK6ubs/Vb9SuvRYWLIAtt1y/PaJwOOu734Wdd+6Q0uw/QC6Xw5/Hgs68LVpy76yPJHUBXpV0rqTPA5u2YLnDgDciYnFErAHuAfZtMKYG2AYgOeTVB3i/uD0xEF9W3Gpf+AJ88AGsWPFxW10dLFwIu+0GO+7YcbWZWefQkhD5BoXzGecBewEnAae0YLmFwEhJvZLzHIcCDe+5NRUYn0x/CXgoIiJpH5dcvTUY2BFfVtxqO+wAF10EXbsW9kjefBNqamC//eDrX4cuLfnTNzNrRktuwPh0MpmncD6E5FzHjA0sN0PSFGAWUAvMBiZJugKYGRFTgVuB30iaByyhcEUWEfFicjXX3GTZc3xlVjq77w7XXFPY+/joI6isLFyxZWbWHlp6A8aG/gu4aEODIuIyCifli11a1P8hcHwTy/4I+FHK+qxIly4waFBHV2FmnVHaAxq+aYaZmTV725N+TXXhEDEzM5o/nPUMhXtlNRYYq7Mpx8zMNibN3fZkcCkLMTOzjY8v8jQzs9QcImZmllqTISLpvuJbs5uZmTXU3J7Ir4Bpkr4nqXupCjIzs41HcyfW75b0V+AHwExJvwHqi/qvL0F9ZmZWxjb0jfXVwEoKz1XfjKIQMTMza+7LhkcC11O4GeLwiPigZFWZmdlGobk9ke8Bx0fEi6UqxszMNi7NnRM5oJSFmJnZxsffEzEzs9QcImZmllpmISJpZ0nPFr1WSDq/wZiLi/pfkFS39u7BkuZLej7pm5lVnWZmll7ah1JtUES8DAwDkNSVwjPS720w5sfAj5MxxwAXRMSSoiEHR8R7WdVoZmZtU6rDWYcCr0XEgmbGnAjcUaJ6zMysHWS2J9LAOJoJCEm9gCOBc4uag8JtVwK4JSImNbHsBGACQGVlJblcrr1qNrM2yOfz/jwmOvO2UERk+wbSJsBbwO4R8W4TY04AToqIY4raBkREjaStgOnA1yPikebeq6qqKmbO9OkTs3KQy+Worq7u6DLKQjlvC0nPRERV2uVLcTjrKGBWUwGS+MSeSkTUJD//ReFcyt6ZVWhmZqmUIkSaPdchqQ9wEPCnorbekjZbOw2MBl7IuE4zM2ulTM+JJAFwOHB2UdtXASJiYtL0eWBaRKwsWrQSuFfS2hp/FxH3Z1mrmZm1XqYhkgTDFg3aJjaYnwxMbtD2OjA0y9rMzKzt/I11MzNLzSFiZmapOUTMzCw1h4iZmaXmEDEzs9QcImZmlppDxMzMUnOImJlZag4RMzNLzSFiZmapOUTMzCw1h4iZmaXmEDEzs9QcImZmlppDxMzMUnOImJlZapmFiKSdJT1b9Foh6fwGY6olLS8ac2lR35GSXpY0T9J3sqrTzMzSy+zJhhHxMjAMQFJXoAa4t5Ghj0bEmOKGZPzPKTxadxHwtKSpETE3q3rNzKz1SnU461DgtYhY0MLxewPzIuL1iFgN3AmMzaw6MzNLJdNnrBcZB9zRRN8oSc8BbwEXRcSLwADgzaIxi4B9GltY0gRgAkBlZSW5XK69ajazNsjn8/48Jjrztsg8RCRtAhwLXNJI9yxgu4jISzoa+COwY2vWHxGTgEkAVVVVUV1d3baCzaxd5HI5/Hks6MzbohSHs44CZkXEuw07ImJFROST6fuA7pL6Uzh/sk3R0IFJm5mZlZFShMiJNHEoS9LWkpRM753U8z7wNLCjpMHJnsw4YGoJajUzs1bI9HCWpN4UrrA6u6jtqwARMRH4EvA1SbXAKmBcRARQK+lc4G9AV+C25FyJmZmVkUxDJCJWAls0aJtYNH0TcFMTy94H3JdlfWZm1jb+xrqZmaXmEDEzs9QcImZmlppDxMzMUnOImJlZag4RMzNLzSFiZmapOUTMzCw1h4iZmaXmEDEzs9QcImZmlppDxMzMUnOImJlZag4RMzNLzSFiZmapZRYiknaW9GzRa4Wk8xuM+YqkOZKel/S4pKFFffOT9mclzcyqTjMzSy+zh1JFxMvAMABJXSk8I/3eBsPeAA6KiKWSjgImAfsU9R8cEe9lVaOZmbVNpk82LHIo8FpELChujIjHi2afBAaWqB4zM2sHpQqRccAdGxhzBvDXovkApkkK4JaImNTYQpImABMAKisryeVyba/WzNosn8/785jozNtCEZHtG0ibAG8Bu0fEu02MORj4BbB/RLyftA2IiBpJWwHTga9HxCPNvVdVVVXMnOnTJ2blIJfLUV1d3dFllIVy3haSnomIqrTLl+LqrKOAWc0EyBDgl8DYtQECEBE1yc9/UTiXsncJajUzs1YoRYicSBOHsiRtC9wDnBwRrxS195a02dppYDTwQglqNTOzVsj0nEgSAIcDZxe1fRUgIiYClwJbAL+QBFCb7FZVAvcmbd2A30XE/VnWamZmrZdpiETESgohUdw2sWj6TODMRpZ7HRjasN3MzMqLv7FuZmapOUTMzCw1h4iZmaXmEDEzs9QcImZmlppDxMzMUnOImJlZag4RMzNLzSFiZmapOUTMzCw1h4iZmaXmEDEzs9QcImZmlppDxMzMUnOImJlZapmFiKSdJT1b9Foh6fwGYyTpZ5LmSZojaXhR33hJryav8VnVaWZm6WX2UKqIeBkYBiCpK1BD4VnpxY4Cdkxe+wA3A/tI6gdcBlQBATwjaWpELM2qXjMza71SHc46FHgtIhY0aB8L/F8UPAlsLunTwBHA9IhYkgTHdODIVr1jfT3cdRdcdx28/347/ApmZtZQqUJkHHBHI+0DgDeL5hclbU21t9ySJfDnP8OMGTB7duuqNTOzFsn0GesAkjYBjgUuyWj9E4AJAJWVleRyuY87jzsOVq8uTBe3m1nm8vn8+p/H/2CdeVtkHiIUznvMioh3G+mrAbYpmh+YtNUA1Q3ac42tPCImAZMAqqqqorq6urFhZlZiuVwOfx4LOvO2KMXhrBNp/FAWwFTglOQqrZHA8oh4G/gbMFpSX0l9gdFJm5mZlZFM90Qk9QYOB84uavsqQERMBO4DjgbmAR8ApyV9SyRdCTydLHZFRCzJslYzM2u9TEMkIlYCWzRom1g0HcA5TSx7G3BblvWZmVnb+BvrZmaWmkPEzMxSc4iYmVlqDhEzM0vNIWJmZqmpcIFU5yBpMdDw/lz2sT7A8o4uohmlrC+r92qv9bZlPa1dNqvx/YH3WrHezqyct8XOEbFZ2oVL8Y31komILTu6hnImaVJETOjoOppSyvqyeq/2Wm9b1tPaZbMaL2lmRFS1dL2dWTlvC0kz27K8D2f9Z/l/HV3ABpSyvqzeq73W25b1tHbZrMdbJ9apDmeZWfko5/99l1o5b4u21uY9ETPLyqSOLqCMlPO2aFNt3hMxM7PUvCdiZmapOUTMzCw1h4iZpSLpNkn/kvRCUVs/SdMlvZr87NuRNZaKpG0kPSxprqQXJX0jae/w7SGpp6SnJD2X1PbDpH2wpBmS5km6K3kKbas5RMwsrcnAkQ3avgM8GBE7Ag8m8/8JaoFvRsRuwEjgHEm7UR7b4yPgkIgYCgwDjkweAngNcENE7AAsBc5Is3KHiJmlEhGPAA0fFjcW+HUy/WvgOABJP5V0aTJ9hKRHJHWaf38i4u2ImJVM/xt4CRhAGWyPKMgns92TVwCHAFMaqe1Pkk5Jps+WdHtz6+9U31g3sw5XmTziGuAdoDKZvgR4WtKjwM+AoyOiviMKzJqkQcDngBmUyfaQ1BV4BtgB+DnwGrAsImqTIYsohB7ABOAxSW8A36SwZ9Ukh4iZZSIiQlIk0x9IOgt4BLggIl7r2OqyIWlT4A/A+RGxQtK6vo7cHhFRBwyTtDlwL7BLM2PfTfaSHgY+v6FHk3ea3UkzKwvvSvo0QPLzX0V9ewLvA5/piMKyJqk7hQC5PSLuSZrLantExDIK4TAK2FzS2h2JgUBNmtocImbWnqYC45Pp8cCfACRtR+HQyOeAoyTt0zHlZUOFXY5bgZci4vqirg7fHpK2TPZAkFQBHE7hnM3DwJcaqW1v4KiktoskDW72DSLCL7/88qvVL+AO4G1gDYVj6mcAW1C4CulV4AGgH6Bk+thkub2A54GeHf07tOO22J/Cyeo5wLPJ6+hy2B7AEGB2UtsLwKVJ+/bAU8A84G6gR/J6DhiejDk2CRs1tX7f9sTMzFLz4SwzM0vNIWJmZqk5RMzMLDWHiJmZpeYQMTOz1BwiZs1I7s76hqR+yXzfZH5QI2PzDduaWe/lki5qZS0tXr9ZqThEzJoREW8CNwNXJ01XA5MiYn6HFWVWRhwiZht2AzBS0vkUvlR2XUsXlHRM8syG2ZIekFRZ1D1U0hPJsybOKlrmYklPS5qz9tkPZuXKN2A024CIWCPpYuB+YHRErGnF4v8ARkZESDoT+BaF211A4ZvEI4HewGxJfwH2AHYE9qbwzeapkg6Mwm3XzcqOQ8SsZY6icIuPPYDprVhuIHBXcvO9TYA3ivr+FBGrgFWSHqYQHPsDoyncpgJgUwqh4hCxsuTDWWYbIGkYhZvWjQQuWHtX1ha6EbgpIvYEzgZ6FvU1vOdQUNj7+J+IGJa8doiIW9tQvlmmHCJmzUjuznozhedDLAR+TCvOiQB9+PgW2+Mb9I1Nnn+9BVANPA38DTg9eS4FkgZI2qoNv4JZpnw4y6x5ZwELI2LtIaxfAKdJOigi/t5gbC9Ji4rmrwcuB+6WtBR4CCi+rfYcCndI7Q9cGRFvAW9J2hV4InmgUR44ifWfQ2FWNnwXXzMzS82Hs8zMLDWHiJmZpeYQMTOz1BwiZmaWmkPEzMxSc4iYmVlqDhEzM0vt/wPqLcdmYnqKSwAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# matplotlib\n", "import matplotlib.pyplot as plt\n", "plt.scatter([1,2,3], [7,8,9], s=[3,60,90], c=['red','blue','green'], alpha=0.5)\n", "\n", "plt.text(10, 8.5, \"Here is some\")\n", "\n", "plt.grid(True)\n", "\n", "plt.xscale('log') \n", "plt.xlabel(\"X Label\")\n", "plt.ylabel(\"Y Label\")\n", "plt.title(\"Title\")\n", "plt.xticks([10,20,30], [\"10x\", \"20x\",\"30x\"])\n", "plt.show()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% \n", "is_executing": false } } } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" }, "kernelspec": { "name": "python3", "language": "python", "display_name": "Python 3" }, "pycharm": { "stem_cell": { "cell_type": "raw", "source": [ "Simulate \n" ], "metadata": { "collapsed": false } } } }, "nbformat": 4, "nbformat_minor": 0 }