{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[33mWARNING: Skipping top2vec as it is not installed.\u001b[0m\n", "\u001b[33mWARNING: Skipping bertopic as it is not installed.\u001b[0m\n" ] } ], "source": [ "!pip install \"umap-learn[parametric_umap]\" -Uq" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "from umap.parametric_umap import ParametricUMAP\n", "import numpy as np\n", "\n", "\n", "ParametricUMAP().fit_transform(np.random.random((300000,384)))" ] } ], "metadata": { "interpreter": { "hash": "266722041ed6426a0a88c0d75e9dd39659f44e3a6fea07300cd13bea36eb387d" }, "kernelspec": { "display_name": "Python 3.9.7 64-bit ('py3': conda)", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }