NB_avg %>%
mutate(cluster = dbscan::dbscan(cbind(accuracy,rts), eps = 0.5, minPts = 3)$cluster) %>%
ggplot(aes(targets, accuracy, color=factor(cluster))) +
ggtitle("targets (window = 8 trials)", "NOTE: each point is a single participant") +
geom_point(alpha=0.3) +
#geom_smooth(method='lm', se = F) +
facet_wrap(~condition)
NB_avg %>%
ggplot(aes(lures, accuracy, color=condition)) +
ggtitle("lures (window = 8 trials)", "NOTE: each point is a single participant") +
geom_point(alpha=0.3) +
geom_smooth(method='lm', se = F)
NB_avg %>%
ggplot(aes(skewness, accuracy, color=condition)) +
ggtitle("skewness (window = 8 trials)", "NOTE: each point is a single participant") +
geom_point(alpha=0.3) +
geom_smooth(method='lm', se = F)
NB_avg %>%
ggplot(aes(lumpiness, accuracy, color=condition)) +
ggtitle("lumpiness", "NOTE: each point is a single participant") +
geom_point(alpha=0.3) +
geom_smooth(method='lm', se = F)
NB_avg %>%
ggplot(aes(lumpiness, rts, color=condition)) +
ggtitle("lumpiness (window = 8 trials)", "NOTE: each point is a single participant") +
xlab("lumpiness") +
ylab("Average RT") +
geom_point(alpha=0.3) +
geom_smooth(method='lm', se = F)
nback <- NB_modified
nback %>%
mutate(block=as.factor(block)) %>%
mutate(trial=as.factor(trial)) %>%
mutate(condition=ifelse(condition=='2-back',2,3)) %>%
#filter(condition=='3-back') %>%
#mutate(correct=as.numeric(correct)) %>%
inspect_cor(show_plot = T)
averaged_nback <- NB_avg
averaged_nback %>%
mutate(condition=ifelse(condition=='2-back',2,3)) %>%
inspect_cor(show_plot = T)