Newer
Older
notebooks / ccn2019-criterion.R
#==================================================#
# model the "accuract" column (a for global, and al for local accuracy)

library(here)
library(tidyverse)
library(caret)
library(inspectdf)
library(skimr)
library(ROSE)

load(here("notebooks/data/nback_seqs.Rd"))

set.seed(42)

seqs.imputed <- seqs %>%
  filter(!is.na(correct), !is.na(rt)) %>%
  mutate(correct=factor(correct,labels=c("INCORRECT","CORRECT")))

#DEBUG inspect_num(seqs.imputed)

#seqs.dummy <- predict(dummyVars(~.,data=seqs.imputed),seqs.imputed)


#DEBUG train_indexes <- createResample(seqs.imputed$cr,list=F)[,1]

train_indexes <- createDataPartition(seqs.imputed$correct,
                                     times = 1,
                                     p = 0.7,
                                     list = F)
train_data <- seqs.imputed[train_indexes,]
test_data <- seqs.imputed[-train_indexes,]

train_data.imbalanced <- ROSE(correct ~ .,
                            data = train_data,
                            seed = 1)$data

# VIsualize split
train_data.imbalanced$grp <- "train"
test_data$grp <- "test"

rbind(train_data.imbalanced, test_data) %>% 
  ggplot(aes(x=correct, fill=grp)) +
  geom_histogram(stat="count", position='dodge') +
  labs(title="Imbalanced Split")

control <- trainControl(
  method = "repeatedcv",
  number = 5,
  repeats = 2,
  verboseIter = T,
  savePredictions = T
)

train_data <- train_data.imbalanced %>% select(-grp)

pls.new_model <- train(
  cr ~ .-a-al-dp-rt-correct,
  data = train_data,
  method = "pls",
  preProcess = c("zv","center","scale"),
  trControl = control
)

plot(pls.new_model)
summary(pls.new_model)

ggplot(varImp(pls.new_model)) +
  labs(title="Criterion - Variable Importance")

pls.common_model <- train(
  cr ~ .-a-al-dp-cr-rt-correct-tl-l-ll-s-sl-ul-vl,
  data = train_data,
  method = "pls",
  preProcess = c("zv","center","scale"),
  trControl = control
)

summary(pls.common_model)
plot(varImp(pls.common_model), main="Criterion - Variable Importance (Common Model)")

trellis.par.set(caretTheme())
densityplot(pls.new_model, pch = "|")
densityplot(pls.common_model, pch = "|")

pls.models <- resamples(list(new = pls.new_model, common = pls.common_model))
summary(pls.models)
dotplot(pls.models, metric = "Rsquared")
diffValues <- diff(pls.models)
bwplot(diffValues, layout=c(1,3))


pls.new_train_predicted <- predict(pls.new_model, train_data, type="raw")
pls.common_train_predicted <- predict(pls.common_model, train_data, type="raw")
pls.new_predicted <- predict(pls.new_model, test_data, type="raw")
pls.common_predicted <- predict(pls.common_model, test_data, type="raw")

# SSE and RMSE
# 
# SSE <- sum((test_data$cr - pls.new_predicted)^2)    # sum of squared errors
# SST <- sum((test_data$cr - mean(train_data$cr))^2) # total sum of squares, remember to use training data here
# R_square <- 1 - SSE/SST
# SSE <- sum((test_data$cr - pls.new_predicted)^2)
# RMSE <- sqrt(SSE/length(pls.new_predicted))
# 
# 
# SSE <- sum((test_data$cr - pls.common_predicted)^2)
# R_square <- 1 - SSE/SST
# SSE <- sum((test_data$cr - pls.common_predicted)^2)
# RMSE <- sqrt(SSE/length(pls.common_predicted))
# 

as.data.frame(cbind(predicted = pls.common_predicted, observed = test_data$cr)) %>%
  ggplot(aes(predicted, observed)) +
    coord_cartesian(xlim = c(-5, -3), ylim = c(-5, -3)) +
    geom_point(alpha = 0.1,shape=16) + 
    geom_smooth(method=glm) +
    ggtitle("Criterion: Predicted vs Actual") +
    xlab("Predecited") +
    ylab("Observed")