import time import numpy as np import pandas as pd import benchmarks.common as common from generators.nb_gm_004 import SequenceGenerator if __name__ == '__main__': res = [] for s in range(common.sample_size): trials = np.random.randint(common.trials_range[0], common.trials_range[1]) targets = int(trials / 3) lures = int(targets / 6) # tl_ratio = 2.0 n = np.random.randint(2, 8) gen = SequenceGenerator(common.choices, n) st = time.time() seq = gen.generate(trials, targets, lures) st = time.time() - st t, lu = common.count_targets_and_lures(seq, n) skewed = common.skewness(seq, common.choices) res.append(['nb_gm_004', n, trials, st, t, lu, skewed, ''.join(seq)]) print(f"sequence #{s+1} generated") res_df = pd.DataFrame(res, columns=['alg', 'n', 'trials', 'time', 'targets', 'lures', 'skewed', 'sequence']) res_df.to_csv('benchmarks/results/nb_gm_004_profile.csv', sep=',', encoding='utf-8')