# Common benchmark parameters
choices = alphabetic_choices = ['A', 'B', 'C', 'D', 'E', 'F']
trials_range = (10, 65)
n = 4
sample_size = 100
def count_targets_and_lures(seq, n):
mask = 'D'*n
for index in range(n, len(seq)):
if seq[index] == seq[index - n]:
mask += 'T'
elif seq[index] in seq[index - n - 1:index - n + 1]:
mask += 'L'
else:
mask += 'D'
return mask.count('T'), mask.count('L')
def skewness(seq, choices):
import heapq
trials = len(seq)
freqs = [float(seq.count(c)) for c in choices]
ralph_skewed = sum(heapq.nlargest(int(len(choices) / 2), freqs)) > (trials * 2 / 3)
return ralph_skewed